Implementation of a new high‐power current‐source single‐stage PV grid‐connected system with reactive power compensation

2019 ◽  
Vol 13 (11) ◽  
pp. 1873-1881
Author(s):  
Haitao Wu ◽  
Yonghe Liu ◽  
Zhihe Wang
Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1921 ◽  
Author(s):  
B. Kavya Santhoshi ◽  
K. Mohana Sundaram ◽  
Sanjeevikumar Padmanaban ◽  
Jens Bo Holm-Nielsen ◽  
Prabhakaran K. K.

Solar Photovoltaic (PV) systems have been in use predominantly since the last decade. Inverter fed PV grid topologies are being used prominently to meet power requirements and to insert renewable forms of energy into power grids. At present, coping with growing electricity demands is a major challenge. This paper presents a detailed review of topological advancements in PV-Grid Tied Inverters along with the advantages, disadvantages and main features of each. The different types of inverters used in the literature in this context are presented. Reactive power is one of the ancillary services provided by PV. It is recommended that reactive power from the inverter to grid be injected for reactive power compensation in localized networks. This practice is being implemented in many countries, and researchers have been trying to find an optimal way of injecting reactive power into grids considering grid codes and requirements. Keeping in mind the importance of grid codes and standards, a review of grid integration, the popular configurations available in literature, Synchronization methods and standards is presented, citing the key features of each kind. For successful integration with a grid, coordination between the support devices used for reactive power compensation and their optimal reactive power capacity is important for stability in grid power. Hence, the most important and recommended intelligent algorithms for the optimization and proper coordination are peer reviewed and presented. Thus, an overview of Solar PV energy-fed inverters connected to the grid is presented in this paper, which can serve as a guide for researchers and policymakers.


2014 ◽  
Vol 602-605 ◽  
pp. 2828-2831 ◽  
Author(s):  
Yi Fei Wang ◽  
You Xin Yuan ◽  
Jing Chen ◽  
Qi Jian Cheng

According to the low power factor and low running efficiency, a dynamic reactive power compensation method of the super high-power and high-voltage motor is proposed in this paper. The following works have been done in the study: topology of the dynamic reactive power compensation device; principle of the dynamic reactive power compensation method; control system of the dynamic reactive power compensation device; implementation of the dynamic reactive power compensation method. The amount of reactive power compensation can be adjusted smoothly and dynamically in the process of the super high-power and high-voltage motor soft-starting. The research of this paper has laid a theoretical foundation for this compensator in industrial applications. The novel design is characterized by flexible parameter setting, excellent soft starting performance of the super high-power and high-voltage motor and bright prospect in application.


Author(s):  
Radionov A.A., A. A. ◽  
Gasiyarov Vadim R. ◽  
Maklakov Alexander S. ◽  
Maklakova Ekaterina A.

The objective of this study is to develop and research a new method of reactive power compensation in industrial grid via high-power adjustable speed drives (HP ASDs) with medium voltage (MV) three level neutral point clamped back-to-back (3L-NPC BtB) converters. The article is concerned with the mathematical description, control system designing and obtaining of experimental results. An important advantage of the new method is that specialized equipment is not necessary for its implementation. The analysis of our experimental research shows that the developed reactive power compensation method has been successfully applied for main HP ASD of plate mill rolling state 5000 (Magnitogorsk Iron and Steel Works, PJSC). Some ways for future industrial application prospects and improvements of the designed method are outlined in the conclusion of the paper.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3068
Author(s):  
Yifei Wang ◽  
Kaiyang Yin ◽  
Youxin Yuan ◽  
Jing Chen

Focusing on the starting problems of a high-voltage and high-power motor, such as large starting current, low power factor, waste of resources, and lack of harmonic control, this paper proposes a current-limiting soft starting method for a high-voltage and high-power motor. The method integrates functions like autotransformer voltage reduction–current limiting starting, magnetron voltage regulation–current limiting starting, and reactive power compensation during starting, and then the power filtering subsystem is turned on to filter out harmonics in power system as the starting process terminates. According to the current-limiting starting characteristic curve, the topological structure of the integrated device is established and then the functional logic switching strategy is put forward. Afterwards, the mechanisms of current-limiting starting, reactive compensation and dynamic harmonic filtering are analyzed, and the simulation and experimental evaluation are completed. In particular, the direct starting and the current-limiting are performed by developing a simulation system. In addition, a 10 kV/19,000 kW fan-loaded motor of a steel plant is chosen as the subject to verify the performance of the current-limiting soft starting method. As shown by the experimental results, the motor’s starting current is about 2 times that of its rated current, the power factor is raised to over 0.9 after the reactive power compensation, and the harmonic filter can effectively eliminate current harmonics and reduce the total harmonic distortion (THD) of supply currents.


Sign in / Sign up

Export Citation Format

Share Document