Performance Analysis of PI and PR Controller for a Single-Phase PV Grid System with Effective Active and Reactive Power Compensation

Author(s):  
Srikanth Sattenapalli ◽  
V. Joshi Manohar
2021 ◽  
Author(s):  
Rosa Iris Viera-Diaz ◽  
Mario Gonzalez-Garcia ◽  
Ricardo Alvarez-Salas ◽  
Homero Miranda ◽  
Yuniel Leon-Ruiz

Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1490
Author(s):  
Ting Chen ◽  
Hong Cheng ◽  
Cong Wang ◽  
Wenbo Chen ◽  
Zhihao Zhao

This paper proposes an open-circuit fault-tolerant design for the cascaded H-Bridge rectifier incorporating reactive power compensation. If one or two switching devices of the H-bridge modules are fault, the drive signals of the faulty H-bridge modules will be artificially redistributed into the bridgeless mode (including the boost bridgeless mode, the symmetric boost bridgeless mode, the totem-pole bridgeless mode and the symmetry totem-pole bridgeless mode) and cooperate with the normally operated H-bridge modules. In this case, the faulty cascaded H-bridge rectifier is not only able to achieve active power transmission, but also can still provide part of reactive power compensation when injecting reactive power from the power grid. Nonetheless, the reactive power that it can supply will be limited, due to the unidirectional characteristics of the bridgeless mode for the faulty modules. Therefore, a method for calculating its adjustable power factor angle range is also presented, which provides the basis for the faulty modules switching to the bridgeless mode. Then, a control strategy of the cascaded H-bridge rectifier incorporating reactive power compensation under the faulty condition and normal operation is presented. Finally, an experimental platform with a single-phase cascaded H-bridge rectifier containing three cells is given to verify the proposed theories.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4796 ◽  
Author(s):  
Eyad Radwan ◽  
Mutasim Nour ◽  
Emad Awada ◽  
Ali Baniyounes

This paper presents a control scheme for a photovoltaic (PV) system that uses a single-phase grid-connected inverter with low-voltage ride-through (LVRT) capability. In this scheme, two PI regulators are used to adjust the power angle and voltage modulation index of the inverter; therefore, controlling the inverter’s active and reactive output power, respectively. A fuzzy logic controller (FLC) is also implemented to manage the inverter’s operation during the LVRT operation. The FLC adjusts (or de-rates) the inverter’s reference active and reactive power commands based on the grid voltage sag and the power available from the PV system. Therefore, the inverter operation has been divided into two modes: (i) Maximum power point tracking (MPPT) during the normal operating conditions of the grid, and (ii) LVRT support when the grid is operating under faulty conditions. In the LVRT mode, the de-rating of the inverter active output power allows for injection of some reactive power, hence providing voltage support to the grid and enhancing the utilization factor of the inverter’s capacity. The proposed system was modelled and simulated using MATLAB Simulink. The simulation results showed good system performance in response to changes in reference power command, and in adjusting the amount of active and reactive power injected into the grid.


Sign in / Sign up

Export Citation Format

Share Document