Coarse alignment of a shipborne strapdown inertial navigation system using star sensor

2015 ◽  
Vol 9 (7) ◽  
pp. 852-860 ◽  
Author(s):  
Qiuying Wang ◽  
Wei Gao ◽  
Ming Diao ◽  
Fei Yu ◽  
Yibing Li
2012 ◽  
Vol 566 ◽  
pp. 235-238
Author(s):  
Guang Tao Zhou ◽  
Gui Min Shi ◽  
Lei Zhang ◽  
Kai Li

In the strapdown inertial navigation system (SINS), gyro drift will result in navigation errors. A new algorithm based on star sensor is proposed in this paper to estimate gyro drift. The paper analyzed the working principle of star sensor and the technique of estimating gyro drift. Gyro drift can be estimated through the high-precision attitude information provided by a star sensor. Kalman filter is used in the integrated navigation model. Simulation results show that the proposed algorithm can estimate gyro drift accurately and improve the precision of SINS.


2012 ◽  
Vol 182-183 ◽  
pp. 1090-1094
Author(s):  
Wei Gao ◽  
Lei Zhang

In inertial navigation system, gyro is used to measure the angular velocity of carrier relative to inertial space for achieve attitude matrix updated in real time. Gyro difficult to eliminate the error, results in strapdown inertial navigation system precision decrease with time. Star sensor is a high-precision attitude measuring instrument and don’t require any priori information, the attitude date can be provided by star sensor. Thus, gyro is simulated by star sensor in order to improve the precision of strapdown inertial navigation system.


Author(s):  
Seong Yun Cho ◽  
Hyung Keun Lee ◽  
Hung Kyu Lee

In this paper, performance of the initial fine alignment for the stationary nonleveling strapdown inertial navigation system (SDINS) containing low-grade gyros is analyzed. First, the observability is analyzed by conducting a rank test of an observability matrix and by investigating the normalized error covariance of the extended Kalman filter based on the ten-state model. The results show that the accelerometer biases on horizontal axes are unobservable. Second, the steady-state estimation errors of the state variables are derived using the observability equation. It is verified that the estimates of the state variables have errors due to the unobservable state variables and nonleveling attitude angles of a vehicle containing the SDINS. Especially, this paper shows that the larger the attitude angles of the vehicle are, the greater the estimation errors are. Finally, it is shown that the performance of the eight-state model excluding the two unobservable state variables is better than that of the ten-state model in the fine alignment by a Monte Carlo simulation.


Sign in / Sign up

Export Citation Format

Share Document