Constant frequency, two-stage quasiresonant convertor

1992 ◽  
Vol 139 (3) ◽  
pp. 227
Author(s):  
K.W.E. Cheng ◽  
P.D. Evans
Keyword(s):  
Author(s):  
Jahangir S. Rastegar ◽  
Richard T. Murray

A novel class of two-stage, vibration-based electrical energy generators is presented for linear or rotary input motions in applications which the input speed is relatively low and varies significantly over time such as wind mills, turbo-machinery used to harvest tidal flows, devices for harnessing coastal wave energy, and the like. Current technologies use magnet-and-coil based electrical generators in such machinery. However, to make the generation cycle efficient, gearing or other similar mechanisms must be used to increase the input speed. Variable speed-control mechanisms are also usually needed to achieve high energy conversion efficiency. Additionally, in many applications, such as those where energy is to be harvested from very low frequency oscillations of a platform such as a buoy or a ship, the use of speed increasing mechanisms such as gearing or the like is impractical. In this paper, a novel class of two-stage electrical energy generators that could operate with very low speed and highly variable input rotations and/or oscillations is described. The first stage consists of simple linkage mechanisms, which are used to excite vibratory elements. These two-stage generators are designed to convert low-speed and highly variable input rotations and oscillations to relatively high and constant frequency vibratory motions, which are then used to generate electrical energy using mechanical to electrical energy conversion devices such as piezoelectric elements. The design of a number of such two-stage generators together with a discussion of their potential applications is presented.


Author(s):  
R. Murray ◽  
J. Rastegar

A novel class of two-stage, vibration-based electrical energy generators is presented for linear or rotary input motions in applications which the input speed is relatively low and varies significantly over time such as wind mills, turbo-machinery used to harvest tidal flows, devices for harnessing coastal wave energy, and the like. Current technologies use magnet-and-coil based electrical generators in such machinery. However, to make the generation cycle efficient, gearing or other similar mechanisms must be used to increase the input speed. Variable speed-control mechanisms are also usually needed to achieve high energy conversion efficiency. Additionally, in many applications, such as those where energy is to be harvested from very low frequency oscillations of a platform such as a buoy or a ship, the use of speed increasing mechanisms such as gearing or the like is impractical. In this paper, a novel class of two-stage electrical energy generators that could operate with very low speed and highly variable input rotations and/or oscillations is described. The first stage consists of simple linkage mechanisms, which are used to excite vibratory elements. These two-stage generators are designed to convert low-speed and highly variable input rotations and oscillations to relatively high and constant frequency vibratory motions, which are then used to generate electrical energy using mechanical to electrical energy conversion devices such as piezoelectric elements. The design of a number of such two-stage generators together with a discussion of their potential applications is presented. Specifically, the computer simulated output of a small wave energy harvester design is presented.


Author(s):  
Sengshiu Chung ◽  
Peggy Cebe

We are studying the crystallization and annealing behavior of high performance polymers, like poly(p-pheny1ene sulfide) PPS, and poly-(etheretherketone), PEEK. Our purpose is to determine whether PPS, which is similar in many ways to PEEK, undergoes reorganization during annealing. In an effort to address the issue of reorganization, we are studying solution grown single crystals of PPS as model materials.Observation of solution grown PPS crystals has been reported. Even from dilute solution, embrionic spherulites and aggregates were formed. We observe that these morphologies result when solutions containing uncrystallized polymer are cooled. To obtain samples of uniform single crystals, we have used two-stage self seeding and solution replacement techniques.


2007 ◽  
Vol 177 (4S) ◽  
pp. 121-121
Author(s):  
Antonio Dessanti ◽  
Diego Falchetti ◽  
Marco Iannuccelli ◽  
Susanna Milianti ◽  
Gian P. Strusi ◽  
...  
Keyword(s):  

2007 ◽  
Vol 177 (4S) ◽  
pp. 120-120
Author(s):  
Pamela I. Ellsworth ◽  
Anthony Caldamone
Keyword(s):  

2005 ◽  
Vol 38 (18) ◽  
pp. 68
Author(s):  
SHARON WORCESTER
Keyword(s):  

1997 ◽  
Author(s):  
Saul Sternberg ◽  
Teresa Pantzer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document