Robust nonlinear controller for power system transient stability enhancement with voltage regulation

1996 ◽  
Vol 143 (5) ◽  
pp. 407 ◽  
Author(s):  
G. Guo ◽  
Y. Wang ◽  
K.-Y. Lim ◽  
L. Gao
Author(s):  
G. Fusco ◽  
M. Russo

This paper proposes a simple design procedure to solve the problem of controlling generator transient stability following large disturbances in power systems. A state-feedback excitation controller and power system stabilizer are designed to guarantee robustness against uncertainty in the system parameters. These controllers ensure satisfactory swing damping and quick decay of the voltage regulation error over a wide range of operating conditions. The controller performance is evaluated in a case study in which a three-phase short-circuit fault near the generator terminals in a four-bus power system is simulated.


2016 ◽  
Vol 19 (2) ◽  
pp. 16-24
Author(s):  
Quang Huu Vinh Luu

A new algorithm simulating the impacts of the VAR supporting devices such as the static var compensators (SVCs) and the synchronous condensers (SCs) under condition of symmetrical disturbances in multi-machine power system is mentioned. Some typical numerical examples are presented in this article. The comparisons of variation of the state parameters, such as the voltage, frequency, reactive power outputs and asynchronous torques…are simulated under condition of the action of the automatic voltage regulation systems of generators and of the VAR supporting devices. The transient energy margins are calculated and compared to assess the transient stability in multi-machine power system. Basing on this algorithm, the PC program uses the elements of the eigen-image matrix to bring the specific advantages for the simulation of the transient features of state variables.


Sign in / Sign up

Export Citation Format

Share Document