scholarly journals Implementation of all‐optical Toffoli gate by 2D Si–air photonic crystal

2021 ◽  
Author(s):  
Paromita De ◽  
Sapana Ranwa ◽  
Sourangshu Mukhopadhyay
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamed Azhdari ◽  
Sahel Javahernia

Abstract Increasing the speed of operation in all optical signal processing is very important. For reaching this goal one needs high speed optical devices. Optical half adders are one of the important building blocks required in optical processing. In this paper an optical half adder was proposed by combining nonlinear photonic crystal ring resonators with optical waveguides. Finite difference time domain method wase used for simulating the final structure. The simulation results confirmed that the rise time for the proposed structure is about 1 ps.


Silicon ◽  
2021 ◽  
Author(s):  
Mohammad Moradi ◽  
Masoud Mohammadi ◽  
Saeed Olyaee ◽  
Mahmood Seifouri

Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 250
Author(s):  
Vakhtang Jandieri ◽  
Ramaz Khomeriki ◽  
Tornike Onoprishvili ◽  
Daniel Erni ◽  
Levan Chotorlishvili ◽  
...  

This review paper summarizes our previous findings regarding propagation characteristics of band-gap temporal solitons in photonic crystal waveguides with Kerr-type nonlinearity and a realization of functional and easily scalable all-optical NOT, AND and NAND logic gates. The proposed structure consists of a planar air-hole type photonic crystal in crystalline silicon as the nonlinear background material. A main advantage of proposing the gap-soliton as a signal carrier is that, by operating in the true time-domain, the temporal soliton maintains a stable pulse envelope during each logical operation. Hence, multiple concatenated all-optical logic gates can be easily realized paving the way to multiple-input ultrafast full-optical digital signal processing. In the suggested setup, due to the gap-soliton features, there is no need to amplify the output signal after each operation which can be directly used as a new input signal for another logical operation. The efficiency of the proposed logic gates as well as their scalability is validated using our original rigorous theoretical formalism confirmed by full-wave computational electromagnetics.


2021 ◽  
Vol 113 ◽  
pp. 110855
Author(s):  
Lei Zhang ◽  
Yuanhe Sun ◽  
Zhenjiang Li ◽  
Lin Wang ◽  
Shuqi Cao ◽  
...  

2021 ◽  
Vol 397 (1) ◽  
pp. 2000341
Author(s):  
Anil Kumar Shukla ◽  
Girijesh Narayan Pandey

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hassan Mamnoon-Sofiani ◽  
Sahel Javahernia

Abstract All optical logic gates are building blocks for all optical data processors. One way of designing optical logic gates is using threshold switching which can be realized by combining an optical resonator with nonlinear Kerr effect. In this paper we showed that a novel structure consisting of nonlinear photonic crystal ring resonator which can be used for realizing optical NAND/NOR and majority gates. The delay time of the proposed NAND/NOR and majority gates are 2.5 ps and 1.5 ps respectively. Finite difference time domain and plane wave expansion methods were used for simulating the proposed optical logic gates. The total footprint of the proposed structure is about 988 μm2.


2014 ◽  
Vol 8 (6) ◽  
pp. 474-481 ◽  
Author(s):  
Eiichi Kuramochi ◽  
Kengo Nozaki ◽  
Akihiko Shinya ◽  
Koji Takeda ◽  
Tomonari Sato ◽  
...  

2007 ◽  
Vol 90 (16) ◽  
pp. 161118 ◽  
Author(s):  
Myung-Ki Kim ◽  
In-Kag Hwang ◽  
Se-Heon Kim ◽  
Hyun-Joo Chang ◽  
Yong-Hee Lee

Sign in / Sign up

Export Citation Format

Share Document