Shortest path models for scale-free network topologies: literature review and cross comparisons

2018 ◽  
Vol 12 (4) ◽  
pp. 3869-3872 ◽  
Author(s):  
Agnese V. Ventrella ◽  
Giuseppe Piro ◽  
Luigi Alfredo Grieco

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xiuwen Fu ◽  
Yongsheng Yang ◽  
Haiqing Yao

Previous research of wireless sensor networks (WSNs) invulnerability mainly focuses on the static topology, while ignoring the cascading process of the network caused by the dynamic changes of load. Therefore, given the realistic features of WSNs, in this paper we research the invulnerability of WSNs with respect to cascading failures based on the coupled map lattice (CML). The invulnerability and the cascading process of four types of network topologies (i.e., random network, small-world network, homogenous scale-free network, and heterogeneous scale-free network) under various attack schemes (i.e., random attack, max-degree attack, and max-status attack) are investigated, respectively. The simulation results demonstrate that the rise of interference R and coupling coefficient ε will increase the risks of cascading failures. Cascading threshold values Rc and εc exist, where cascading failures will spread to the entire network when R>Rc or ε>εc. When facing a random attack or max-status attack, the network with higher heterogeneity tends to have a stronger invulnerability towards cascading failures. Conversely, when facing a max-degree attack, the network with higher uniformity tends to have a better performance. Besides that, we have also proved that the spreading speed of cascading failures is inversely proportional to the average path length of the network and the increase of average degree k can improve the network invulnerability.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Guoyong Mao ◽  
Ning Zhang

Computing the average shortest-path length (ASPL) of a large scale-free network needs much memory space and computation time. Based on the feature of scale-free network, we present a simplification algorithm by cutting the suspension points and the connected edges; the ASPL of the original network can be computed through that of the simplified network. We also present a multilevel simplification algorithm to get ASPL of the original network directly from that of the multisimplified network. Our experiment shows that these algorithms require less memory space and time in computing the ASPL of scale-free network, which makes it possible to analyze large networks that were previously impossible due to memory limitations.


2008 ◽  
Vol 22 (31) ◽  
pp. 3053-3059 ◽  
Author(s):  
HYUN-JOO KIM

We introduce a new quantity, relevance-strength which describes the relevance of a node to the others in a scale-free network. We define a weight between two nodes i and j based on the shortest path length between them and the relevance-strength of a node is defined as the sum of the weights between it and others. For the Barabási and Albert model which is a well-known scale-free network model, we measure the relevance-strength of each node and study the correlations with other quantities, such as the degree, the mean degree of neighbors of a node, and the mean relevance-strength of neighbors. We find that the relevance-strength shows power law behaviors and the crossover behaviors for the degree and the mean relevance-strength of neighbors. Also, we study the scaling behaviors of the relevance-strength for various average relevance-strength for all nodes.


2016 ◽  
Vol 30 (22) ◽  
pp. 1650302 ◽  
Author(s):  
Lina Sun ◽  
Ning Huang ◽  
Yue Zhang ◽  
Yannan Bai

An efficient routing strategy can deliver packets quickly to improve the network capacity. Node congestion and transmission path length are inevitable real-time factors for a good routing strategy. Existing dynamic global routing strategies only consider the congestion of neighbor nodes and the shortest path, which ignores other key nodes’ congestion on the path. With the development of detection methods and techniques, global traffic information is readily available and important for the routing choice. Reasonable use of this information can effectively improve the network routing. So, an improved global dynamic routing strategy is proposed, which considers the congestion of all nodes on the shortest path and incorporates the waiting time of the most congested node into the path. We investigate the effectiveness of the proposed routing for scale-free network with different clustering coefficients. The shortest path routing strategy and the traffic awareness routing strategy only considering the waiting time of neighbor node are analyzed comparatively. Simulation results show that network capacity is greatly enhanced compared with the shortest path; congestion state increase is relatively slow compared with the traffic awareness routing strategy. Clustering coefficient increase will not only reduce the network throughput, but also result in transmission average path length increase for scale-free network with tunable clustering. The proposed routing is favorable to ease network congestion and network routing strategy design.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Lifu Wang ◽  
Yali Zhang ◽  
Jingxiao Han ◽  
Zhi Kong

In this paper, the controllability issue of complex network is discussed. A new quantitative index using knowledge of control centrality and condition number is constructed to measure the controllability of given networks. For complex networks with different controllable subspace dimensions, their controllability is mainly determined by the control centrality factor. For the complex networks that have the equal controllable subspace dimension, their different controllability is mostly determined by the condition number of subnetworks’ controllability matrix. Then the effect of this index is analyzed based on simulations on various types of network topologies, such as ER random network, WS small-world network, and BA scale-free network. The results show that the presented index could reflect the holistic controllability of complex networks. Such an endeavour could help us better understand the relationship between controllability and network topology.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Guoyong Mao ◽  
Ning Zhang

Computing the average shortest-path length of a large scale-free network needs much memory space and computation time. Hence, parallel computing must be applied. In order to solve the load-balancing problem for coarse-grained parallelization, the relationship between the computing time of a single-source shortest-path length of node and the features of node is studied. We present a dynamic programming model using the average outdegree of neighboring nodes of different levels as the variable and the minimum time difference as the target. The coefficients are determined on time measurable networks. A native array and multimap representation of network are presented to reduce the memory consumption of the network such that large networks can still be loaded into the memory of each computing core. The simplified load-balancing model is applied on a network of tens of millions of nodes. Our experiment shows that this model can solve the load-imbalance problem of large scale-free network very well. Also, the characteristic of this model can meet the requirements of networks with ever-increasing complexity and scale.


2009 ◽  
Vol 29 (5) ◽  
pp. 1230-1232
Author(s):  
Hao RAO ◽  
Chun YANG ◽  
Shao-hua TAO

Sign in / Sign up

Export Citation Format

Share Document