scholarly journals Small World and Scale-Free Network Topologies in an Artificial Regulatory Network Model

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xiuwen Fu ◽  
Yongsheng Yang ◽  
Haiqing Yao

Previous research of wireless sensor networks (WSNs) invulnerability mainly focuses on the static topology, while ignoring the cascading process of the network caused by the dynamic changes of load. Therefore, given the realistic features of WSNs, in this paper we research the invulnerability of WSNs with respect to cascading failures based on the coupled map lattice (CML). The invulnerability and the cascading process of four types of network topologies (i.e., random network, small-world network, homogenous scale-free network, and heterogeneous scale-free network) under various attack schemes (i.e., random attack, max-degree attack, and max-status attack) are investigated, respectively. The simulation results demonstrate that the rise of interference R and coupling coefficient ε will increase the risks of cascading failures. Cascading threshold values Rc and εc exist, where cascading failures will spread to the entire network when R>Rc or ε>εc. When facing a random attack or max-status attack, the network with higher heterogeneity tends to have a stronger invulnerability towards cascading failures. Conversely, when facing a max-degree attack, the network with higher uniformity tends to have a better performance. Besides that, we have also proved that the spreading speed of cascading failures is inversely proportional to the average path length of the network and the increase of average degree k can improve the network invulnerability.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Lifu Wang ◽  
Yali Zhang ◽  
Jingxiao Han ◽  
Zhi Kong

In this paper, the controllability issue of complex network is discussed. A new quantitative index using knowledge of control centrality and condition number is constructed to measure the controllability of given networks. For complex networks with different controllable subspace dimensions, their controllability is mainly determined by the control centrality factor. For the complex networks that have the equal controllable subspace dimension, their different controllability is mostly determined by the condition number of subnetworks’ controllability matrix. Then the effect of this index is analyzed based on simulations on various types of network topologies, such as ER random network, WS small-world network, and BA scale-free network. The results show that the presented index could reflect the holistic controllability of complex networks. Such an endeavour could help us better understand the relationship between controllability and network topology.


2018 ◽  
Vol 35 (1) ◽  
pp. 123-132 ◽  
Author(s):  
Lei Zhu ◽  
Lei Wang ◽  
Xiang Zheng ◽  
Yuzhang Xu

2013 ◽  
Vol 753-755 ◽  
pp. 2959-2962
Author(s):  
Jun Tao Yang ◽  
Hui Wen Deng

Assigning the value of interest to each node in the network, we give a scale-free network model. The value of interest is related to the fitness and the degree of the node. Experimental results show that the interest model not only has the characteristics of the BA scale-free model but also has the characteristics of fitness model, and the network has a power-law distribution property.


2002 ◽  
Vol 66 (5) ◽  
Author(s):  
C. P. Warren ◽  
L. M. Sander ◽  
I. M. Sokolov

2006 ◽  
Vol 20 (27) ◽  
pp. 1755-1761 ◽  
Author(s):  
BAIBAI FU ◽  
ZIYOU GAO ◽  
FASHENG LIU ◽  
XIANJUAN KONG

An express highway itself is not a scale-free network, while the Express Passenger Transport System (EPTS) on the express highway network has the properties of a small-world and scale-free network. Data analysis based on the observation of the EPTS in Shandong province, China, shows that the EPTS has the properties of scale-free networks and the power exponent λ of the distribution is equal to about 2.1. Based on the scale-free network topology structure of the EPTS network, the construction of the EPTS network will be more efficient and robust.


Sign in / Sign up

Export Citation Format

Share Document