Phenomena during the growth and decay of spread-F

1963 ◽  
Vol 25 (5) ◽  
pp. 445
Author(s):  
M.S.V. Gopala rao ◽  
B. Ramachandra rao
Keyword(s):  
2021 ◽  
Vol 13 (5) ◽  
pp. 945
Author(s):  
Zhongxin Deng ◽  
Rui Wang ◽  
Yi Liu ◽  
Tong Xu ◽  
Zhuangkai Wang ◽  
...  

In the current study, we investigated the mechanism of medium-scale traveling ionospheric disturbance (MSTID) triggering spread-F in the low latitude ionosphere using ionosonde observation and Global Navigation Satellite System-Total Electron Content (GNSS-TEC) measurement. We use a series of morphological processing techniques applied to ionograms to retrieve the O-wave traces automatically. The maximum entropy method (MEM) was also utilized to obtain the propagation parameters of MSTID. Although it is widely acknowledged that MSTID is normally accompanied by polarization electric fields which can trigger Rayleigh–Taylor (RT) instability and consequently excite spread-F, our statistical analysis of 13 months of MSTID and spread-F occurrence showed that there is an inverse seasonal occurrence rate between MSTID and spread-F. Thus, we assert that only MSTID with certain properties can trigger spread-F occurrence. We also note that the MSTID at night has a high possibility to trigger spread-F. We assume that this tendency is consistent with the fact that the polarization electric field caused by MSTID is generally the main source of post-midnight F-layer instability. Moreover, after thorough investigation over the azimuth, phase speed, main frequency, and wave number over the South America region, we found that the spread-F has a tendency to be triggered by nighttime MSTID, which is generally characterized by larger ΔTEC amplitudes.


Nature ◽  
1958 ◽  
Vol 181 (4625) ◽  
pp. 1724-1725 ◽  
Author(s):  
A. J. LYON ◽  
N. J. SKINNER ◽  
R. W. WRIGHT

2008 ◽  
Vol 26 (7) ◽  
pp. 1751-1757 ◽  
Author(s):  
S. V. Thampi ◽  
S. Ravindran ◽  
T. K. Pant ◽  
C. V. Devasia ◽  
R. Sridharan

Abstract. In an earlier study, Thampi et al. (2006) have shown that the strength and asymmetry of Equatorial Ionization Anomaly (EIA), obtained well ahead of the onset time of Equatorial Spread F (ESF) have a definite role on the subsequent ESF activity, and a new "forecast parameter" has been identified for the prediction of ESF. This paper presents the observations of EIA strength and asymmetry from the Indian longitudes during the period from August 2005–March 2007. These observations are made using the line of sight Total Electron Content (TEC) measured by a ground-based beacon receiver located at Trivandrum (8.5° N, 77° E, 0.5° N dip lat) in India. It is seen that the seasonal variability of EIA strength and asymmetry are manifested in the latitudinal gradients obtained using the relative TEC measurements. As a consequence, the "forecast parameter" also displays a definite seasonal pattern. The seasonal variability of the EIA strength and asymmetry, and the "forecast parameter" are discussed in the present paper and a critical value for has been identified for each month/season. The likely "skill factor" of the new parameter is assessed using the data for a total of 122 days, and it is seen that when the estimated value of the "forecast parameter" exceeds the critical value, the ESF is seen to occur on more than 95% of cases.


2016 ◽  
Vol 58 (3) ◽  
pp. 349-357 ◽  
Author(s):  
Shimei Yu ◽  
Zuo Xiao ◽  
Ercha Aa ◽  
Yongqiang Hao ◽  
Donghe Zhang
Keyword(s):  

1978 ◽  
Vol 5 (8) ◽  
pp. 695-698 ◽  
Author(s):  
J. D. Huba ◽  
P. K. Chaturvedi ◽  
S. L. Ossakow ◽  
D. M. Towle

2017 ◽  
Vol 161 ◽  
pp. 98-104 ◽  
Author(s):  
A.J. Carrasco ◽  
I.S. Batista ◽  
J.H.A. Sobral ◽  
M.A. Abdu
Keyword(s):  

Radio Science ◽  
2009 ◽  
Vol 44 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
C. R. Reddi ◽  
M. S. S. R. K. N. Sarma ◽  
K. Niranjan

Sign in / Sign up

Export Citation Format

Share Document