A computing resource scheduling strategy of massive IoT devices in the mobile edge computing environment

Author(s):  
Meiyu Pang ◽  
Xiaofeng Yao ◽  
Miao Geng
Author(s):  
Tong Liu ◽  
Yameng Zhang ◽  
Yanmin Zhu ◽  
Weiqin Tong ◽  
Weiqin Tong ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4798
Author(s):  
Fangni Chen ◽  
Anding Wang ◽  
Yu Zhang ◽  
Zhengwei Ni ◽  
Jingyu Hua

With the increasing deployment of IoT devices and applications, a large number of devices that can sense and monitor the environment in IoT network are needed. This trend also brings great challenges, such as data explosion and energy insufficiency. This paper proposes a system that integrates mobile edge computing (MEC) technology and simultaneous wireless information and power transfer (SWIPT) technology to improve the service supply capability of WSN-assisted IoT applications. A novel optimization problem is formulated to minimize the total system energy consumption under the constraints of data transmission rate and transmitting power requirements by jointly considering power allocation, CPU frequency, offloading weight factor and energy harvest weight factor. Since the problem is non-convex, we propose a novel alternate group iteration optimization (AGIO) algorithm, which decomposes the original problem into three subproblems, and alternately optimizes each subproblem using the group interior point iterative algorithm. Numerical simulations validate that the energy consumption of our proposed design is much lower than the two benchmark algorithms. The relationship between system variables and energy consumption of the system is also discussed.


Author(s):  
Meiyu Pang ◽  
Li Wang ◽  
Ningsheng Fang

Abstract This paper proposes a collaborative scheduling strategy for computing resources of the Internet of vehicles considering location privacy protection in the mobile edge computing environment. Firstly, a multi area multi-user multi MEC server system is designed, in which a MEC server is deployed in each area, and multiple vehicle user equipment in an area can offload computing tasks to MEC servers in different areas by a wireless channel. Then, considering the mobility of users in Internet of vehicles, a vehicle distance prediction based on Kalman filter is proposed to improve the accuracy of vehicle-to-vehicle distance. However, when the vehicle performs the task, it needs to submit the real location, which causes the problem of the location privacy disclosure of vehicle users. Finally, the total cost of communication delay, location privacy of vehicles and energy consumption of all users is formulated as the optimization goal, which take into account the system state, action strategy, reward and punishment function and other factors. Moreover, Double DQN algorithm is used to solve the optimal scheduling strategy for minimizing the total consumption cost of system. Simulation results show that proposed algorithm has the highest computing task completion rate and converges to about 80% after 8000 iterations, and its performance is more ideal compared with other algorithms in terms of system energy cost and task completion rate, which demonstrates the effectiveness of our proposed scheduling strategy.


IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 5609-5622 ◽  
Author(s):  
Li Tianze ◽  
Wu Muqing ◽  
Zhao Min ◽  
Liao Wenxing

Sign in / Sign up

Export Citation Format

Share Document