scholarly journals Energy Efficient SWIPT Based Mobile Edge Computing Framework for WSN-Assisted IoT

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4798
Author(s):  
Fangni Chen ◽  
Anding Wang ◽  
Yu Zhang ◽  
Zhengwei Ni ◽  
Jingyu Hua

With the increasing deployment of IoT devices and applications, a large number of devices that can sense and monitor the environment in IoT network are needed. This trend also brings great challenges, such as data explosion and energy insufficiency. This paper proposes a system that integrates mobile edge computing (MEC) technology and simultaneous wireless information and power transfer (SWIPT) technology to improve the service supply capability of WSN-assisted IoT applications. A novel optimization problem is formulated to minimize the total system energy consumption under the constraints of data transmission rate and transmitting power requirements by jointly considering power allocation, CPU frequency, offloading weight factor and energy harvest weight factor. Since the problem is non-convex, we propose a novel alternate group iteration optimization (AGIO) algorithm, which decomposes the original problem into three subproblems, and alternately optimizes each subproblem using the group interior point iterative algorithm. Numerical simulations validate that the energy consumption of our proposed design is much lower than the two benchmark algorithms. The relationship between system variables and energy consumption of the system is also discussed.

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2914
Author(s):  
Julio C. S. dos Anjos ◽  
João L. G. Gross ◽  
Kassiano J. Matteussi ◽  
Gabriel V. González ◽  
Valderi R. Q. Leithardt ◽  
...  

Advances in communication technologies have made the interaction of small devices, such as smartphones, wearables, and sensors, scattered on the Internet, bringing a whole new set of complex applications with ever greater task processing needs. These Internet of things (IoT) devices run on batteries with strict energy restrictions. They tend to offload task processing to remote servers, usually to cloud computing (CC) in datacenters geographically located away from the IoT device. In such a context, this work proposes a dynamic cost model to minimize energy consumption and task processing time for IoT scenarios in mobile edge computing environments. Our approach allows for a detailed cost model, with an algorithm called TEMS that considers energy, time consumed during processing, the cost of data transmission, and energy in idle devices. The task scheduling chooses among cloud or mobile edge computing (MEC) server or local IoT devices to achieve better execution time with lower cost. The simulated environment evaluation saved up to 51.6% energy consumption and improved task completion time up to 86.6%.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xinhui Ding ◽  
Wenjuan Zhang

Due to the limited computing resources of the mobile edge computing (MEC) server, a massive Internet of things device computing unloading strategy using game theory in mobile edge computing is proposed. First of all, in order to make full use of the massive local Internet of things equipment resources, a new MEC system computing an unloading system model based on device-to-device (D2D) communication is designed and modeled, including communication model, task model, and computing model. Then, by using the utility function, the parameters are substituted into it, and the optimization problem with the goal of maximizing the number of CPU cycles and minimizing the energy consumption is constructed with the unloading strategy and power as constraints. Finally, the game theory is used to solve the problem of computing offload. Based on the proposed beneficial task offload theory, combined with the mobile user device computing offload task amount, transmission rate, idle device performance, and other factors, the computing offload scheme suitable for their own situation is selected. The simulation results show that the proposed scheme has better convergence characteristics, and, compared with other schemes, the proposed scheme significantly improves the amount of data transmission and reduces the energy consumption of the task.


Author(s):  
Julio Cesar Santos dos Anjos ◽  
João Luiz Grave Gross ◽  
Kassiano Jose Matteussi ◽  
Gabriel Villarrubia González ◽  
Valderi Reis Quietinho Leithardt ◽  
...  

Advances in communication technologies have made the interaction of small devices, such as smartphones, wearables, and sensors, scattered on the Internet, bringing a whole new set of complex applications with ever greater task processing needs. These Internet of Things (IoT) devices run on batteries with strict energy restrictions. They tend to offload task processing to remote servers, usually to Cloud Computing (CC) in datacenters geographically located away from the IoT device. In such a context, this work proposes a dynamic cost model to minimize energy consumption and task processing time for IoT scenarios in Mobile Edge Computing environments. Our approach allows for a detailed cost model, with an algorithm called TEMS that considers energy, time consumed during processing, the cost of data transmission, and energy in idle devices. The task scheduling chooses among Cloud or Mobile Edge Computing (MEC) server or local IoT devices to better execution time with lower cost. The simulated environment evaluation saved up to 51.6% energy consumption and improved task completion time up to 86.6%.


Author(s):  
Zhuofan Liao ◽  
Jingsheng Peng ◽  
Bing Xiong ◽  
Jiawei Huang

AbstractWith the combination of Mobile Edge Computing (MEC) and the next generation cellular networks, computation requests from end devices can be offloaded promptly and accurately by edge servers equipped on Base Stations (BSs). However, due to the densified heterogeneous deployment of BSs, the end device may be covered by more than one BS, which brings new challenges for offloading decision, that is whether and where to offload computing tasks for low latency and energy cost. This paper formulates a multi-user-to-multi-servers (MUMS) edge computing problem in ultra-dense cellular networks. The MUMS problem is divided and conquered by two phases, which are server selection and offloading decision. For the server selection phases, mobile users are grouped to one BS considering both physical distance and workload. After the grouping, the original problem is divided into parallel multi-user-to-one-server offloading decision subproblems. To get fast and near-optimal solutions for these subproblems, a distributed offloading strategy based on a binary-coded genetic algorithm is designed to get an adaptive offloading decision. Convergence analysis of the genetic algorithm is given and extensive simulations show that the proposed strategy significantly reduces the average latency and energy consumption of mobile devices. Compared with the state-of-the-art offloading researches, our strategy reduces the average delay by 56% and total energy consumption by 14% in the ultra-dense cellular networks.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 190
Author(s):  
Wu Ouyang ◽  
Zhigang Chen ◽  
Jia Wu ◽  
Genghua Yu ◽  
Heng Zhang

As transportation becomes more convenient and efficient, users move faster and faster. When a user leaves the service range of the original edge server, the original edge server needs to migrate the tasks offloaded by the user to other edge servers. An effective task migration strategy needs to fully consider the location of users, the load status of edge servers, and energy consumption, which make designing an effective task migration strategy a challenge. In this paper, we innovatively proposed a mobile edge computing (MEC) system architecture consisting of multiple smart mobile devices (SMDs), multiple unmanned aerial vehicle (UAV), and a base station (BS). Moreover, we establish the model of the Markov decision process with unknown rewards (MDPUR) based on the traditional Markov decision process (MDP), which comprehensively considers the three aspects of the migration distance, the residual energy status of the UAVs, and the load status of the UAVs. Based on the MDPUR model, we propose a advantage-based value iteration (ABVI) algorithm to obtain the effective task migration strategy, which can help the UAV group to achieve load balancing and reduce the total energy consumption of the UAV group under the premise of ensuring user service quality. Finally, the results of simulation experiments show that the ABVI algorithm is effective. In particular, the ABVI algorithm has better performance than the traditional value iterative algorithm. And in a dynamic environment, the ABVI algorithm is also very robust.


2020 ◽  
Author(s):  
João Luiz Grave Gross ◽  
Cláudio Fernando Fernando Resin Geyer

In a scenario with increasingly mobile devices connected to the Internet, data-intensive applications and energy consumption limited by battery capacity, we propose a cost minimization model for IoT devices in a Mobile Edge Computing (MEC) architecture with the main objective of reducing total energy consumption and total elapsed times from task creation to conclusion. The cost model is implemented using the TEMS (Time and Energy Minimization Scheduler) scheduling algorithm and validated with simulation. The results show that it is possible to reduce the energy consumed in the system by up to 51.61% and the total elapsed time by up to 86.65% in the simulated cases with the parameters and characteristics defined in each experiment.


Sign in / Sign up

Export Citation Format

Share Document