pulse structure
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
pp. 1-18
Author(s):  
Masatoshi Arai ◽  
Ken H. Andersen ◽  
Dimitri N. Argyriou ◽  
Werner Schweika ◽  
Luca Zanini ◽  
...  

The general performance of diffractometers at the first long pulse spallation source ESS, is compared with their counterparts at J-PARC, a short pulse spallation source. The difference in the inherent pulse structure of these neutron sources presents opportunities for new concepts for instrumentation, where performance does not scale simply with source power. The article describes advantages and disadvantages of those diffractometers, adapting to the very different source characteristics. We find that the two sources offer comparable performance in flux and resolution when operating in high-resolution mode. ESS offers significant advantages in tunability and flexibility, notably in the ability to relax resolution in order to increase flux for a given experiment. The slow repetition rate of ESS favors long instruments. On the other hand, J-PARC instruments perform very well in spite of the lower source power and allow better access to epithermal neutrons, of particular interest for PDF analysis of diffraction data.


2021 ◽  
Vol 11 (14) ◽  
pp. 6495
Author(s):  
Michele Opromolla ◽  
Vittoria Petrillo

In this paper, we show that an electron beam produced by a super-conducting linac, driven in a sequence of two undulator modules of different periods, can generate two-color Terahertz radiation with wavelengths ranging from 100 μm to 2 μm. The generated pulses are synchronized, both MW-class, and highly coherent. Their specific properties and generation will be discussed in detail. Besides the single-spike pulse structure, usually observed in oscillators, we show that both the THz pump and probe can be modulated in a coherent comb of pulses, enabling periodic excitation and stroboscopic measurements.


2021 ◽  
pp. 1-14
Author(s):  
Marius Rimmler ◽  
Olaf Felden ◽  
Ulrich Rücker ◽  
Helmut Soltner ◽  
Paul Zakalek ◽  
...  

The High-Brilliance Neutron Source project (HBS) aims at developing a medium-flux accelerator-driven neutron source based on a 70 MeV, 100 mA proton accelerator. The concept optimizes the facility such that it provides high-brilliance neutron beams for instruments operating at different time structures. This can be realized by generating an interlaced proton pulse structure, which is unraveled and sent to three different target stations by a multiplexer system. In the following we present the developments of a multiplexer system at the JULIC accelerator at Forschungszentrum Jülich GmbH (FZJ), which serves as test facility for HBS. The main components of the JULIC multiplexer system are designed to be scalable to the HBS parameters.


Zootaxa ◽  
2020 ◽  
Vol 4895 (2) ◽  
pp. 297-300
Author(s):  
MAURICIO SEBASTIÁN AKMENTINS ◽  
MARTÍN BOULLHESEN

The genus Gastrotheca Fitzinger, 1843 currently harbors 75 species (Frost 2020). These marsupial frogs have a broad latitudinal distribution range in Central and South America, from Costa Rica southward to Argentina (Duellman 2015). The advertisement call features as the pulse structure, call duration, and repetition pulse rate are used by researchers to recognize the species of Gastrotheca (Duellman 2015). The availability of call descriptions is also crucial for recognizing these species with secretive life habits and implementing long-term passive acoustic monitoring programs (Vaira et al. 2011; Akmentins et al. 2014). 


2020 ◽  
Author(s):  
Suraj Pandey ◽  
George Calvey ◽  
Andrea M. Katz ◽  
Tek Narsingh Malla ◽  
Faisal H. M. Koua ◽  
...  

AbstractIn this study, we follow the diffusion and buildup of occupancy of the substrate ceftriaxone in M. tuberculosis β-lactamase BlaC microcrystals by structural analysis of the enzyme substrate complex at single millisecond time resolution. We also show the binding and the reaction of an inhibitor, sulbactam, on a slower millisecond time scale. We use the ‘mix-and-inject’ technique to initiate these reactions by diffusion, and determine the resulting structures by serial crystallography using ultrafast, intense X-ray pulses from the European XFEL (EuXFEL) arriving at MHz repetition rates. Here, we show how to use the EuXFEL pulse structure to dramatically increase the size of the data set and thereby the quality and time resolution of “molecular movies” which unravel ligand binding and enzymatically catalyzed reactions. This shows the great potential for the EuXFEL as a tool for biomedically relevant research, particularly, as shown here, for investigating bacterial antibiotic resistance.One Sentence SummaryDirect observation of fast ligand binding in a biomedically relevant enzyme at near atomic resolution with MHz X-ray pulses at the European XFEL.


2020 ◽  
Vol 196 ◽  
pp. 02023
Author(s):  
Olga Lukovenkova ◽  
Yury Senkevich ◽  
Alexandra Solodchuk ◽  
Albert Shcherbina

The paper discusses the processing and analysis methods for the geoacoustic and electromagnetic emission pulse signals recorded for more than 20 years at the IKIR FEB RAS geodynamic proving ground (Kamchatka Peninsula). The methods for pulse detection, waveform reconstruction, pulse time-frequency analysis using adaptive sparse approximation, structural description of pulse waveforms and pulse classification are proposed. To detect pulses, the adaptive threshold scheme is used. It adjusts to the noise level of a processed signal. To analyze time-frequency structure of the pulses, the adaptive matching pursuit algorithm is used. To identify pulse waveform, the structural description method is proposed. It encodes pulses with special image matrices. The method of the identified pulses classification is considered. Since the methods for pulse structure analysis are sensitive to noise and distortions, the authors propose the method for pulse waveform reconstruction based on wavelet filtering. The geophysical signal information features determined during the analysis can be used to search for anomalies in the data, and then establish a relationship between these anomalies and deformation process dynamics, in particular, with earthquake development processes.


2019 ◽  
Vol 111 (1) ◽  
pp. 84-91 ◽  
Author(s):  
Mingzi Xu ◽  
Kerry L Shaw

Abstract Sympatry among closely related species occurs in both adaptive and nonadaptive radiations. Among closely related, sympatric species of a nonadaptive radiation, the lack of ecological differentiation brings species into continual contact where individuals are exposed to the risk of reproductive interference. Selection thus should cause divergence in multiple components mediating the reproductive boundary. Besides differentiation of reproductive signals per se, spatial segregation is a commonly proposed mechanism that can mitigate reproductive interference. Studying a pair of broadly sympatric, closely related cricket species from a nonadaptive radiation in Hawaii, we 1) quantified acoustic divergence of male songs and 2) tested alternative hypotheses of spatial distribution of calling males of the 2 species. Acoustic analyses of the recorded songs showed that, while the 2 species differed substantially in pulse rate, no spectral or fine temporal segregation of the pulse structure was evident, indicating the potential for acoustic masking. Moreover, we found that calling males of the 2 species are highly mixed both vertically and horizontally and showed the same preference for calling sites. More surprisingly, calling males were found to form mixed-species calling clusters where heterospecific males are closer to each other than conspecific males. Such an individual spacing pattern suggests low heterospecific aggression and/or high conspecific competition. Because females prefer higher sound intensity, heterospecific males may benefit, rather than interfere, with each other in attracting females. These findings offer a potential mechanism enabling species coexistence in sympatry.


2019 ◽  
Vol 793 ◽  
pp. 85-89 ◽  
Author(s):  
L.F. Granz ◽  
O. Mathiak ◽  
S. Villalba-Chávez ◽  
C. Müller

Sign in / Sign up

Export Citation Format

Share Document