scholarly journals Dust emission in star-forming dwarf galaxies: General properties and the nature of the submm excess

2014 ◽  
Vol 570 ◽  
pp. A97 ◽  
Author(s):  
Y. I. Izotov ◽  
N. G. Guseva ◽  
K. J. Fricke ◽  
E. Krügel ◽  
C. Henkel
1998 ◽  
Vol 11 (1) ◽  
pp. 141-144
Author(s):  
P.-A. Duc ◽  
I.F. Mirabel ◽  
E. Brinks

The life and evolution of galaxies are dramatically affected by environmental effects. Interactions with the intergalactic medium and collisions with companions cause major perturbations in the morphology and contents of galaxies: in particular stars and gas clouds may be gravitationally pulled out from their parent galaxies during tidal encounters, forming rings, tails and bridges. This debris of collisions lies at the origin of a new generation of small galaxies, the so-called “tidal dwarf galaxies” (hereafter TDGs). Such an exotic way of forming galaxies was put forward by Schweizer (1978) and by Mirabel et al. (1992), who clearly observed the genesis of a star-forming object, out of material tidally expelled from the interacting system NGC 4038/39 (“The Antennae”). Recent studies, based on optical and HI observations, have shown that TDGs actually form a class of “recycled” objects with some properties similar to the more classical dwarf irregulars (dIrr) and blue compact dwarf galaxies (BCDs).


2018 ◽  
Vol 620 ◽  
pp. A60 ◽  
Author(s):  
R. Cañameras ◽  
N. P. H. Nesvadba ◽  
M. Limousin ◽  
H. Dole ◽  
R. Kneissl ◽  
...  

We report the discovery of a molecular wind signature from a massive intensely star-forming clump of a few 109 M⊙, in the strongly gravitationally lensed submillimeter galaxy “the Emerald” (PLCK_G165.7+49.0) at z = 2.236. The Emerald is amongst the brightest high-redshift galaxies on the submillimeter sky, and was initially discovered with the Planck satellite. The system contains two magnificient structures with projected lengths of 28.5″ and 21″ formed by multiple, near-infrared arcs, falling behind a massive galaxy cluster at z = 0.35, as well as an adjacent filament that has so far escaped discovery in other wavebands. We used HST/WFC3 and CFHT optical and near-infrared imaging together with IRAM and SMA interferometry of the CO(4–3) line and 850 μm dust emission to characterize the foreground lensing mass distribution, construct a lens model with LENSTOOL, and calculate gravitational magnification factors between 20 and 50 in most of the source. The majority of the star formation takes place within two massive star-forming clumps which are marginally gravitationally bound and embedded in a 9 × 1010 M⊙, fragmented disk with 20% gas fraction. The stellar continuum morphology is much smoother and also well resolved perpendicular to the magnification axis. One of the clumps shows a pronounced blue wing in the CO(4–3) line profile, which we interpret as a wind signature. The mass outflow rates are high enough for us to suspect that the clump might become unbound within a few tens of Myr, unless the outflowing gas can be replenished by gas accretion from the surrounding disk. The velocity offset of –200 km s−1 is above the escape velocity of the clump, but not that of the galaxy overall, suggesting that much of this material might ultimately rain back onto the galaxy and contribute to fueling subsequent star formation.


1999 ◽  
Vol 16 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Fabian Walter

AbstractHigh resolution HI observations of nearby dwarf galaxies (most of which are situated in the M81 group at a distance of about 3·2 Mpc) reveal that their neutral interstellar medium (ISM) is dominated by hole-like features most of which are expanding. A comparison of the physical properties of these holes with the ones found in more massive spiral galaxies (such as M31 and M33) shows that they tend to reach much larger sizes in dwarf galaxies. This can be understood in terms of the galaxy's gravitational potential. The origin of these features is still a matter of debate. In general, young star forming regions (OB-associations) are held responsible for their formation. This picture, however, is not without its critics and other mechanisms such as the infall of high velocity clouds, turbulent motions or even gamma ray bursters have been recently proposed. Here I will present one example of a supergiant shell in IC 2574 which corroborates the picture that OB associations are indeed creating these structures. This particular supergiant shell is currently the most promising case to study the effects of the combined effects of stellar winds and supernova explosions which shape the neutral interstellar medium of (dwarf) galaxies.


2020 ◽  
Vol 640 ◽  
pp. A19 ◽  
Author(s):  
Łukasz Tychoniec ◽  
Carlo F. Manara ◽  
Giovanni P. Rosotti ◽  
Ewine F. van Dishoeck ◽  
Alexander J. Cridland ◽  
...  

Context. Recent years have seen building evidence that planet formation starts early, in the first ~0.5 Myr. Studying the dust masses available in young disks enables us to understand the origin of planetary systems given that mature disks are lacking the solid material necessary to reproduce the observed exoplanetary systems, especially the massive ones. Aims. We aim to determine if disks in the embedded stage of star formation contain enough dust to explain the solid content of the most massive exoplanets. Methods. We use Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 (1.1–1.3 mm) continuum observations of embedded disks in the Perseus star-forming region together with Very Large Array (VLA) Ka-band (9 mm) data to provide a robust estimate of dust disk masses from the flux densities measured in the image plane. Results. We find a strong linear correlation between the ALMA and VLA fluxes, demonstrating that emission at both wavelengths is dominated by dust emission. For a subsample of optically thin sources, we find a median spectral index of 2.5 from which we derive the dust opacity index β = 0.5, suggesting significant dust growth. Comparison with ALMA surveys of Orion shows that the Class I dust disk mass distribution between the two regions is similar, but that the Class 0 disks are more massive in Perseus than those in Orion. Using the DIANA opacity model including large grains, with a dust opacity value of κ9 mm = 0.28 cm2 g−1, the median dust masses of the embedded disks in Perseus are 158 M⊕ for Class 0 and 52 M⊕ for Class I from the VLA fluxes. The lower limits on the median masses from ALMA fluxes are 47 M⊕ and 12 M⊕ for Class 0 and Class I, respectively, obtained using the maximum dust opacity value κ1.3 mm = 2.3 cm2 g−1. The dust masses of young Class 0 and I disks are larger by at least a factor of ten and three, respectively, compared with dust masses inferred for Class II disks in Lupus and other regions. Conclusions. The dust masses of Class 0 and I disks in Perseus derived from the VLA data are high enough to produce the observed exoplanet systems with efficiencies acceptable by planet formation models: the solid content in observed giant exoplanets can be explained if planet formation starts in Class 0 phase with an efficiency of ~15%. A higher efficiency of ~30% is necessary if the planet formation is set to start in Class I disks.


2001 ◽  
Vol 371 (3) ◽  
pp. 806-815 ◽  
Author(s):  
K. G. Noeske ◽  
J. Iglesias-Páramo ◽  
J. M. Vílchez ◽  
P. Papaderos ◽  
K. J. Fricke
Keyword(s):  

2017 ◽  
Vol 13 (S336) ◽  
pp. 109-112
Author(s):  
A. Tarchi ◽  
P. Castangia ◽  
G. Surcis ◽  
A. Brunthaler ◽  
K. M. Menten ◽  
...  

AbstractThe dwarf galaxies in the Local Group (LG) reveal a surprising amount of spatial structuring. In particular, almost all non-satellite dwarfs belong to one of two planes that show a very pronounced symmetry. In order to determine if these structures in the LG are dynamically stable or, alternatively, if they only represent transient alignments, proper motion measurements of these galaxies are required. A viable method to derive proper motions is offered by VLBI studies of 22-GHz water (and 6.7-GHz methanol) maser lines in star-forming regions.In 2016, in the framework of the Early Science Program of the Sardinia Radio Telescope (SRT), we have conducted an extensive observational campaign to map the entire optical body of all the LG dwarf galaxies that belong to the two planes, at C and K band, in a search for methanol and water maser emission.Here, we outline the project and present its first results on 3 targets, NGC 6822, IC 1613, and WLM. While no luminous maser emission has been detected in these galaxies, a number of interesting weaker detections has been obtained, associated with particularly active star forming regions. In addition, we have produced deep radio continuum maps for these galaxies, aimed at investigating their star forming activity and providing an improved assessment of star formation rates in these galaxies.


2002 ◽  
Vol 207 ◽  
pp. 357-366
Author(s):  
Eduardo Telles

Stellar Clusters are identified in images and in the spectra of these star forming dwarf galaxies. These Stellar Clusters have properties similar to those observed in other violent star forming galaxies and may the elementary entities of a starburst.


Sign in / Sign up

Export Citation Format

Share Document