scholarly journals Simulating the escaping atmospheres of hot gas planets in the solar neighborhood

2016 ◽  
Vol 586 ◽  
pp. A75 ◽  
Author(s):  
M. Salz ◽  
S. Czesla ◽  
P. C. Schneider ◽  
J. H. M. M. Schmitt
2018 ◽  
Vol 613 ◽  
pp. A9 ◽  
Author(s):  
J. Maíz Apellániz ◽  
R. H. Barbá

Context. O stars are excellent tracers of the intervening ISM because of their high luminosity, blue intrinsic SED, and relatively featureless spectra. We are currently conducting the Galactic O-Star Spectroscopic Survey (GOSSS), which is generating a large sample of O stars with accurate spectral types within several kpc of the Sun. Aims. We aim to obtain a global picture of the properties of dust extinction in the solar neighborhood based on optical-NIR photometry of O stars with accurate spectral types. Methods. We have processed a carefully selected photometric set with the CHORIZOS code to measure the amount [E(4405 − 5495)] and type [R5495] of extinction towards 562 O-type stellar systems. We have tested three different families of extinction laws and analyzed our results with the help of additional archival data. Results. The Maíz Apellániz et al. (2014, A&A, 564, A63) family of extinction laws provides a better description of Galactic dust that either the Cardelli et al. (1989, ApJ, 345, 245) or Fitzpatrick (1999, PASP, 111, 63) families, so it should be preferentially used when analysing samples similar to the one in this paper. In many cases O stars and late-type stars experience similar amounts of extinction at similar distances but some O stars are located close to the molecular clouds left over from their births and have larger extinctions than the average for nearby late-type populations. In qualitative terms, O stars experience a more diverse extinction than late-type stars, as some are affected by the small-grain-size, low-R5495 effect of molecular clouds and others by the large-grain-size, high-R5495 effect of H II regions. Late-type stars experience a narrower range of grain sizes or R5495, as their extinction is predominantly caused by the average, diffuse ISM. We propose that the reason for the existence of large-grain-size, high-R5495 regions in the ISM in the form of H II regions and hot-gas bubbles is the selective destruction of small dust grains by EUV photons and possibly by thermal sputtering by atoms or ions.


1980 ◽  
Vol 5 ◽  
pp. 411-417
Author(s):  
Lennox L. Cowie

At this time we have no direct evidence for the presence of hot gaseous haloes or winds associated with galaxies. We do know that hot gas exists in conjunction with cold gas in the disks of the spirals and that this gas is hot enough to form a substantial corona. There are also a number of indirect observations which would suggest that hot gas flows and possibly bound hot gas occur in both elliptical and spiral galaxies.In the case of elliptical galaxies the expected accumulated mass loss from the stars is not observed. Typical upper limits to the mass of cold gas at less than 1040K are around 108 M based on 21cm emission studies of the galaxies (reviewed by Van Woerden 1977). We would expect almost two orders of magnitude more material than this to have been ejected from the stars. Burke (1968), Johnson and Axford (1971) and Mathews and Baker (1971) postulated the existance of a hot galactic wind with temperatures of a few times 1060K powered by supernovae, in order to clear material from these galaxies. The evidence for hot galactic haloes around spiral galaxies is even more indirect and is based on the existance of high latitude cold clouds in our own galaxy. The velocities and number of these clouds imply that they almost certainly lie high above the galactic cold gas which extends only to a height of 130 Fc in the solar neighborhood. Spitzer therefore suggested in 1956 that an intercloud gas would have to exist to keep these clouds confined, and that to have such a large scaleheight it would have to be hot with temperatures of around 1060K. (An alternative suggestion by Pickelner (1955) was that the halo was cold but supported by turbulent velocities of around 70 km s-1.) The Spitzer Halo was assumed to be maintained by energetic particles from SN in the plane.


1997 ◽  
Vol 161 ◽  
pp. 707-709 ◽  
Author(s):  
Jun Jugaku ◽  
Shiro Nishimura

AbstractWe continued our search for partial (incomplete) Dyson spheres associated with 50 solar-type stars (spectral classes F, G, and K) within 25 pc of the Sun. No candidate objects were found.


Alloy Digest ◽  
1963 ◽  
Vol 12 (8) ◽  

Abstract Cooper Alloy 22W is a high strength, heat resistant casting alloy with a low creep rate. It is recommended for heat applications where stress and hot gas corrosion rate are very high. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, joining, and surface treatment. Filing Code: SS-146. Producer or source: Cooper Alloy Corporation.


Sign in / Sign up

Export Citation Format

Share Document