scholarly journals Calibration-free quantitative elemental analysis of meteor plasma using reference laser-induced breakdown spectroscopy of meteorite samples

2018 ◽  
Vol 610 ◽  
pp. A73 ◽  
Author(s):  
Martin Ferus ◽  
Jakub Koukal ◽  
Libor Lenža ◽  
Jiří Srba ◽  
Petr Kubelík ◽  
...  

Aims. We aim to analyse real-time Perseid and Leonid meteor spectra using a novel calibration-free (CF) method, which is usually applied in the laboratory for laser-induced breakdown spectroscopic (LIBS) chemical analysis. Methods. Reference laser ablation spectra of specimens of chondritic meteorites were measured in situ simultaneously with a high-resolution laboratory echelle spectrograph and a spectral camera for meteor observation. Laboratory data were subsequently evaluated via the CF method and compared with real meteor emission spectra. Additionally, spectral features related to airglow plasma were compared with the spectra of laser-induced breakdown and electric discharge in the air. Results. We show that this method can be applied in the evaluation of meteor spectral data observed in real time. Specifically, CF analysis can be used to determine the chemical composition of meteor plasma, which, in the case of the Perseid and Leonid meteors analysed in this study, corresponds to that of the C-group of chondrites.

2020 ◽  
Vol 1 (2) ◽  
pp. 5-8
Author(s):  
Komang Gde Suastika, Heri Suyanto, Gunarjo, Sadiana, Darmaji

Abstract - Laser-Induced Breakdown Spectroscopy (LIBS) is one method of atomic emission spectroscopy using laser ablation as an energy source. This method is used to characterize the type of amethysts that originally come from Sukamara, Central Kalimantan. The result of amethyst characterization can be used as a reference for claiming the natural wealth of the amethyst. The amethyst samples are directly taken from the amethyst mining field in the District Gem Amethyst and consist of four color variations: white, black, yellow, and purple. These samples were analyzed by LIBS, using laser energy of 120 mJ, delay time detection of 2 μs and accumulation of 3, with and without cleaning. The purpose of this study is to determine emission spectra characteristics, contained elements, and physical characteristics of each amethyst sample. The spectra show that the amethyst samples contain some elements such as Al, Ca, K, Fe, Gd, Ba, Si, Be, H, O, N, Cl and Pu with various emission intensities. The value of emission intensity corresponds to concentration of element in the sample. Hence, the characteristics of the amethysts are based on their concentration value. The element with the highest concentration in all samples is Si, which is related to the chemical formula of SiO2. The element with the lowest concentration in all samples is Ca that is found in black and yellow amethysts. The emission intensity of Fe element can distinguish between white, purple, and yellow amethyst. If Fe emission intensity is very low, it indicates yellow sample. Thus, we may conclude that LIBS is a method that can be used to characterize the amethyst samples.Key words: amethyst, impurity, laser-induced, breakdown spectroscopy, characteristic, gemstones


2021 ◽  
Author(s):  
Khaled Elsayed ◽  
Walid Tawfik ◽  
Ashraf E M Khater ◽  
Tarek S Kayed ◽  
Mohamed Fikry

Abstract This work represents a novel method to determine phosphorus (P) concentration in phosphogypsum (PG) waste samples using calibration-free laser-induced breakdown spectroscopy (LIBS). A 50 mJ Q-switched Nd: YAG laser has generated the PG LIBS spectrum. Spectroscopic analysis of plasma evolution has been characterized by electron density Ne and electron temperature Te using the emission intensity and stark broadening for P I characteristic lines 213.61, 214.91, and 215.40 nm under non-purged (air) and purged (helium) conditions. It was found that both Te and Ne have significant changes linearly with P concentrations 4195, 5288, 6293, and 6905 ppm. The values of plasma Te and Ne increased from about 6900 to 10000 K and 1.1×1017 to 3.4×1017 cm− 3, respectively, for the non-purged PG. On the other hand, Te and Ne ranged from 8200 to 11000 K and 1.4×1017 to 3.5×1017 cm− 3, respectively, for the PG purged with helium. It is concluded that Te and Ne values represent a fingerprint plasma characterization for a given P concentration in PG samples, which can be used to identify P concentration without a PG's complete analysis. These results demonstrate a new achievement in the field of spectrochemical analysis of environmental applications.


Sign in / Sign up

Export Citation Format

Share Document