scholarly journals Properties and redshift evolution of star-forming galaxies with high [O III]/[O II] ratios with MUSE at 0.28 < z < 0.85

2018 ◽  
Vol 618 ◽  
pp. A40 ◽  
Author(s):  
M. Paalvast ◽  
A. Verhamme ◽  
L. A. Straka ◽  
J. Brinchmann ◽  
E. C. Herenz ◽  
...  

We present a study of the [O III]/[O II] ratios of star-forming galaxies drawn from Multi-Unit Spectroscopic Explorer (MUSE) data spanning a redshift range 0.28 < z < 0.85. Recently discovered Lyman continuum (LyC) emitters have extremely high oxygen line ratios: [O III]λ5007/[O II]λλ3726, 3729 > 4. Here we aim to understand the properties and the occurrences of galaxies with such high line ratios. Combining data from several MUSE Guaranteed Time Observing (GTO) programmes, we select a population of star-forming galaxies with bright emission lines, from which we draw 406 galaxies for our analysis based on their position in the z-dependent star formation rate (SFR)–stellar mass (M∗) plane. Out of this sample 15 are identified as extreme oxygen emitters based on their [O III]/[O II] ratios (3.7%) and 104 galaxies have [O III]/[O II] > 1 (26%). Our analysis shows no significant correlation between M∗, SFR, and the distance from the SFR−M∗ relation with [O III]/[O II]. We find a decrease in the fraction of galaxies with [O III]/[O II] > 1 with increasing M∗, however, this is most likely a result of the relationship between [O III]/[O II] and metallicity, rather than between [O III]/[O II] and M∗. We draw a comparison sample of local analogues with ⟨z⟩ ≈ 0.03 from the Sloan Digital Sky Survey, and find similar incidence rates for this sample. In order to investigate the evolution in the fraction of high [O III]/[O II] emitters with redshift, we bin the sample into three redshift subsamples of equal number, but find no evidence for a dependence on redshift. Furthermore, we compare the observed line ratios with those predicted by nebular models with no LyC escape and find that most of the extreme oxygen emitters can be reproduced by low metallicity models. The remaining galaxies are likely LyC emitter candidates.

2019 ◽  
Vol 624 ◽  
pp. A21 ◽  
Author(s):  
N. G. Guseva ◽  
Y. I. Izotov ◽  
K. J. Fricke ◽  
C. Henkel

A large sample of Mg II emitting star-forming galaxies with low metallicity [O/H] = log(O/H) – log(O/H)⊙ between –0.2 and –1.2 dex is constructed from Data Release 14 of the Sloan Digital Sky Survey. We selected 4189 galaxies with Mg II λ2797, λ2803 emission lines in the redshift range z ∼ 0.3–1.0 or 35% of the total Sloan Digital Sky Survey star-forming sample with redshift z ≥ 0.3. We study the dependence of the magnesium-to-oxygen and magnesium-to-neon abundance ratios on metallicity. Extrapolating this dependence to [Mg/Ne] = 0 and to solar metallicity we derive a magnesium depletion of [Mg/Ne] ≃ –0.4 (at solar metallicity). We prefer neon instead of oxygen to evaluate the magnesium depletion in the interstellar medium because neon is a noble gas and is not incorporated into dust, contrary to oxygen. Thus, we find that more massive and more metal abundant galaxies have higher magnesium depletion. The global parameters of our sample, such as the mass of the stellar population and star formation rate, are compared with previously obtained results from the literature. These results confirm that Mg II emission has a nebular origin. Our data for interstellar magnesium-to-oxygen abundance ratios relative to the solar value are in good agreement with similar measurements made for Galactic stars, for giant stars in the Milky Way satellite dwarf galaxies, and with low-metallicity damped Lyman-alpha systems.


2021 ◽  
Vol 504 (1) ◽  
pp. 65-88
Author(s):  
Abhijeet Anand ◽  
Dylan Nelson ◽  
Guinevere Kauffmann

ABSTRACT In order to study the circumgalactic medium (CGM) of galaxies we develop an automated pipeline to estimate the optical continuum of quasars and detect intervening metal absorption line systems with a matched kernel convolution technique and adaptive S/N criteria. We process ∼ one million quasars in the latest Data Release 16 (DR16) of the Sloan Digital Sky Survey (SDSS) and compile a large sample of ∼ 160 000 Mg ii absorbers, together with ∼ 70 000 Fe ii systems, in the redshift range 0.35 &lt; zabs &lt; 2.3. Combining these with the SDSS DR16 spectroscopy of ∼1.1 million luminous red galaxies (LRGs) and ∼200 000 emission line galaxies (ELGs), we investigate the nature of cold gas absorption at 0.5 &lt; z &lt; 1. These large samples allow us to characterize the scale dependence of Mg ii with greater accuracy than in previous work. We find that there is a strong enhancement of Mg ii absorption within ∼50 kpc of ELGs, and the covering fraction within 0.5rvir of ELGs is 2–5 times higher than for LRGs. Beyond 50 kpc, there is a sharp decline in Mg ii for both kinds of galaxies, indicating a transition to the regime where the CGM is tightly linked with the dark matter halo. The Mg ii-covering fraction correlates strongly with stellar mass for LRGs, but weakly for ELGs, where covering fractions increase with star formation rate. Our analysis implies that cool circumgalactic gas has a different physical origin for star-forming versus quiescent galaxies.


2019 ◽  
Vol 629 ◽  
pp. A7
Author(s):  
Mikkel O. Lindholmer ◽  
Kevin A. Pimbblet

In this work we use the property that, on average, star formation rate increases with redshift for objects with the same mass – the so called galaxy main sequence – to measure the redshift of galaxy clusters. We use the fact that the general galaxy population forms both a quenched and a star-forming sequence, and we locate these ridges in the SFR–M⋆ plane with galaxies taken from the Sloan Digital Sky Survey in discrete redshift bins. We fitted the evolution of the galaxy main sequence with redshift using a new method and then subsequently apply our method to a suite of X-ray selected galaxy clusters in an attempt to create a new distance measurement to clusters based on their galaxy main sequence. We demonstrate that although it is possible in several galaxy clusters to measure the main sequences, the derived distance and redshift from our galaxy main sequence fitting technique has an accuracy of σz = ±0.017 ⋅ (z + 1) and is only accurate up to z ≈ 0.2.


2021 ◽  
Vol 923 (2) ◽  
pp. 205
Author(s):  
Hassen M. Yesuf ◽  
Luis C. Ho ◽  
S. M. Faber

Abstract The morphology and structure of galaxies reflect their star formation and assembly histories. We use the framework of mutual information (MI) to quantify the interdependence among several structural variables and to rank them according to their relevance for predicting the specific star formation rate (SSFR) by comparing the MI of the predictor variables with the SSFR and penalizing variables that are redundant. We apply this framework to study ∼3700 face-on star-forming galaxies (SFGs) with varying degrees of bulge dominance and central concentration and with stellar mass M ⋆ ≈ 109 M ⊙−5 × 1011 M ⊙ at redshift z = 0.02–0.12. We use the Sloan Digital Sky Survey (SDSS) Stripe 82 deep i-band imaging data, which improve measurements of asymmetry and bulge dominance indicators. We find that star-forming galaxies are a multiparameter family. In addition to M ⋆, asymmetry emerges as the most powerful predictor of SSFR residuals of SFGs, followed by bulge prominence/concentration. Star-forming galaxies with higher asymmetry and stronger bulges have higher SSFR at a given M ⋆. The asymmetry reflects both irregular spiral arms and lopsidedness in seemingly isolated SFGs and structural perturbations by galaxy interactions or mergers.


2019 ◽  
Vol 623 ◽  
pp. A40 ◽  
Author(s):  
Y. I. Izotov ◽  
N. G. Guseva ◽  
K. J. Fricke ◽  
C. Henkel

We present a sample of low-redshift (z <  0.133) candidates for extremely low-metallicity star-forming galaxies with oxygen abundances 12 + log O/H <  7.4 selected from the Data Release 14 (DR14) of the Sloan Digital Sky Survey (SDSS). Three methods are used to derive their oxygen abundances. Among these methods two are based on strong [O II]λ3727 Å, [O III]λ4959 Å, and [O III]λ5007 Å emission lines, which we call strong-line and semi-empirical methods. These were applied for all galaxies. We have developed one of these methods, the strong-line method, in this paper. This method is specifically focused on the accurate determination of metallicity in extremely low-metallicity galaxies and may not be used at higher metallicities with 12 + log O/H ≳ 7.5. The third, the direct Te method, was applied for galaxies with detected [O III]λ4363 emission lines. All three methods give consistent abundances and can be used in combination or separately for selection of lowest-metallicity candidates. However, the strong-line method is preferable for spectra with a poorly detected or undetected [O III]λ4363 emission line. In total, our list of selected candidates for extremely low-metallicity galaxies includes 66 objects.


2020 ◽  
Vol 494 (3) ◽  
pp. 3469-3480 ◽  
Author(s):  
Sebastián Bustamante ◽  
Sara L Ellison ◽  
David R Patton ◽  
Martin Sparre

ABSTRACT In recent observational studies, star-forming galaxies have been shown to follow a relation often dubbed the fundamental metallicity relation (FMR). This relation links the stellar mass of a galaxy with its star formation rate (SFR) and its gas-phase metallicity. Specifically, the FMR predicts that galaxies, at a given stellar mass, exhibit lower metallicities for higher SFRs. This trend is qualitatively consistent with observations of galaxy pairs, which have been robustly shown to experience increasing gas-phase metallicity dilution and enhanced star formation activity with decreasing projected separation. In this work, we show that, despite the qualitative consistency with FMR expectations, the observed O/H dilution in galaxy pairs of the Sloan Digital Sky Survey is stronger than what is predicted by the FMR. We conclude that the evolutionary phase of galaxies interacting with companions is not encoded in the FMR, and thus, mergers constitute a clearly defined population of outliers. We find that galaxies in pairs are consistent with the FMR only when their separation is larger than 110 kpc. Finally, we also quantify the local environment of the pairs using the number of galaxy neighbours within 2 Mpc, N2, and the projected separation to the second closest galaxy, r2. We find that pairs are more sensitive to a second companion than to the local galaxy density, displaying less elevated SFRs with smaller values of r2.


2019 ◽  
Vol 489 (1) ◽  
pp. L108-L113 ◽  
Author(s):  
Timothy A Davis ◽  
Lisa M Young

ABSTRACT In this letter we construct a large sample of early-type galaxies (ETGs) with measured gas-phase metallicities from the Sloan Digital Sky Survey and Galaxy Zoo in order to investigate the origin of the gas that fuels their residual star formation. We use this sample to show that star-forming elliptical galaxies have a substantially different gas-phase metallicity distribution from spiral galaxies, with ≈7.4 per cent having a very low gas-phase metallicity for their mass. These systems typically have fewer metals in the gas phase than they do in their stellar photospheres, which strongly suggests that the material fuelling their recent star formation was accreted from an external source. We use a chemical evolution model to show that the enrichment time-scale for low-metallicity gas is very short, and thus that cosmological accretion and minor mergers are likely to supply the gas in ≳ 37 per cent of star-forming ETGs, in good agreement with estimates derived from other independent techniques.


2020 ◽  
Vol 500 (4) ◽  
pp. 4469-4490 ◽  
Author(s):  
James Trussler ◽  
Roberto Maiolino ◽  
Claudia Maraston ◽  
Yingjie Peng ◽  
Daniel Thomas ◽  
...  

ABSTRACT We investigate the environmental dependence of the stellar populations of galaxies in Sloan Digital Sky Survey Data Release 7 (SDSS DR7). Echoing earlier works, we find that satellites are both more metal-rich (&lt;0.1 dex) and older (&lt;2 Gyr) than centrals of the same stellar mass. However, after separating star-forming, green valley, and passive galaxies, we find that the true environmental dependence of both stellar metallicity (&lt;0.03 dex) and age (&lt;0.5 Gyr) is in fact much weaker. We show that the strong environmental effects found when galaxies are not differentiated result from a combination of selection effects brought about by the environmental dependence of the quenched fraction of galaxies, and thus we strongly advocate for the separation of star-forming, green valley, and passive galaxies when the environmental dependence of galaxy properties are investigated. We also study further environmental trends separately for both central and satellite galaxies. We find that star-forming galaxies show no environmental effects, neither for centrals nor for satellites. In contrast, the stellar metallicities of passive and green valley satellites increase weakly (&lt;0.05 and &lt;0.08 dex, respectively) with increasing halo mass, increasing local overdensity and decreasing projected distance from their central; this effect is interpreted in terms of moderate environmental starvation (‘strangulation’) contributing to the quenching of satellite galaxies. Finally, we find a unique feature in the stellar mass–stellar metallicity relation for passive centrals, where galaxies in more massive haloes have larger stellar mass (∼0.1 dex) at constant stellar metallicity; this effect is interpreted in terms of dry merging of passive central galaxies and/or progenitor bias.


2020 ◽  
Vol 496 (3) ◽  
pp. 3796-3807
Author(s):  
A Saxena ◽  
L Pentericci ◽  
D Schaerer ◽  
R Schneider ◽  
R Amorin ◽  
...  

ABSTRACT We explore X-ray emission from a sample of 18 He ii λ1640 emitting star-forming galaxies at z ∼ 2.3–3.6 from the VANDELS survey in the Chandra Deep Field South, to set constraints on the role of X-ray sources in powering the He ii emission. We find that 4 He ii emitters have tentative detections with S/N ∼ 2 and have X-ray luminosities, LX = 1.5−4.9 × 1041 erg s−1. The stacked luminosity of all 18 He ii emitters is 2.6 × 1041 erg s−1, and that of a subset of 13 narrow He ii emitters (FHWM(He ii) &lt; 1000 km s−1) is 3.1 × 1041 erg s−1. We also measure stacked LX for non-He ii emitters through bootstrapping of matched samples, and find LX = 2.5 × 1041 erg s−1, which is not significantly different from LX measured for He ii emitters. The LX per star formation rate for He ii emitters (log (LX/SFR) ∼ 40.0) and non-emitters (log (LX/SFR) ∼ 39.9) are also comparable and in line with the redshift evolution and metallicity dependence predicted by models. Due to the non-significant difference between the X-ray emission from galaxies with and without He ii, we conclude that X-ray binaries or weak or obscured active galactic nuclei are unlikely to be the dominant producers of He ii ionizing photons in VANDELS star-forming galaxies at z ∼ 3. Given the comparable physical properties of both He ii emitters and non-emitters reported previously, alternative He ii ionizing mechanisms such as localized low-metallicity stellar populations, Pop-III stars, etc. may need to be explored.


2021 ◽  
Vol 503 (3) ◽  
pp. 4309-4319
Author(s):  
Jong Chul Lee ◽  
Ho Seong Hwang ◽  
Hyunmi Song

ABSTRACT To study environmental effects on the circumgalactic medium (CGM), we use the samples of redMaPPer galaxy clusters, background quasars, and cluster galaxies from the Sloan Digital Sky Survey (SDSS). With ∼82 000 quasar spectra, we detect 197 Mg ii absorbers in and around the clusters. The detection rate per quasar is 2.7 ± 0.7 times higher inside the clusters than outside the clusters, indicating that Mg ii absorbers are relatively abundant in clusters. However, when considering the galaxy number density, the absorber-to-galaxy ratio is rather low inside the clusters. If we assume that Mg ii absorbers are mainly contributed by the CGM of massive star-forming galaxies, a typical halo size of cluster galaxies is smaller than that of field galaxies by 30 ± 10 per cent. This finding supports that galaxy haloes can be truncated by interaction with the host cluster.


Sign in / Sign up

Export Citation Format

Share Document