emission line galaxies
Recently Published Documents


TOTAL DOCUMENTS

332
(FIVE YEARS 52)

H-INDEX

40
(FIVE YEARS 6)

2021 ◽  
Vol 922 (2) ◽  
pp. 170
Author(s):  
Danielle A. Berg ◽  
John Chisholm ◽  
Dawn K. Erb ◽  
Evan D. Skillman ◽  
Richard W. Pogge ◽  
...  

Abstract Stellar population models produce radiation fields that ionize oxygen up to O+2, defining the limit of standard H ii region models (<54.9 eV). Yet, some extreme emission-line galaxies, or EELGs, have surprisingly strong emission originating from much higher ionization potentials. We present UV HST/COS and optical LBT/MODS spectra of two nearby EELGs that have very high-ionization emission lines (e.g., He ii λλ1640,4686 C iv λλ1548,1550, [Fe v]λ4227, [Ar iv]λλ4711,4740). We define a four-zone ionization model that is augmented by a very high-ionization zone, as characterized by He+2 (>54.4 eV). The four-zone model has little to no effect on the measured total nebular abundances, but does change the interpretation of other EELG properties: we measure steeper central ionization gradients; higher volume-averaged ionization parameters; and higher central T e , n e , and log U values. Traditional three-zone estimates of the ionization parameter can underestimate the average log U by up to 0.5 dex. Additionally, we find a model-independent dichotomy in the abundance patterns, where the α/H abundances are consistent but N/H, C/H, and Fe/H are relatively deficient, suggesting these EELGs are α/Fe-enriched by more than three times. However, there still is a high-energy ionizing photon production problem (HEIP3). Even for such α/Fe enrichment and very high log U s, photoionization models cannot reproduce the very high-ionization emission lines observed in EELGs.


2021 ◽  
Vol 920 (2) ◽  
pp. 78
Author(s):  
William P. Bowman ◽  
Robin Ciardullo ◽  
Gregory R. Zeimann ◽  
Caryl Gronwall ◽  
Donghui Jeong ◽  
...  

2021 ◽  
Vol 161 (6) ◽  
pp. 255
Author(s):  
Louise O. V. Edwards ◽  
Florence Durret ◽  
Isabel Márquez ◽  
Kevin Zhang

2021 ◽  
Vol 912 (2) ◽  
pp. 100
Author(s):  
Laurel H. Weiss ◽  
William P. Bowman ◽  
Robin Ciardullo ◽  
Gregory R. Zeimann ◽  
Caryl Gronwall ◽  
...  

2021 ◽  
Vol 912 (2) ◽  
pp. 145
Author(s):  
Gautam Nagaraj ◽  
Robin Ciardullo ◽  
Alex Lawson ◽  
William P. Bowman ◽  
Greg Zeimann ◽  
...  

2021 ◽  
Vol 504 (1) ◽  
pp. 857-870
Author(s):  
Shadab Alam ◽  
Nicholas P Ross ◽  
Sarah Eftekharzadeh ◽  
John A Peacock ◽  
Johan Comparat ◽  
...  

ABSTRACT Understanding the links between the activity of supermassive black holes (SMBHs) at the centres of galaxies and their host dark matter haloes is a key question in modern astrophysics. The final data release of the SDSS-IV eBOSS provides the largest contemporary spectroscopic sample of galaxies and quasi-stellar objects (QSOs). Using this sample and covering the redshift interval z = 0.7–1.1, we have measured the clustering properties of the eBOSS QSOs, emission-line galaxies (ELGs), and luminous red galaxies (LRGs). We have also measured the fraction of QSOs as a function of the overdensity defined by the galaxy population. Using these measurements, we investigate how QSOs populate and sample the galaxy population, and how the host dark-matter haloes of QSOs sample the underlying halo distribution. We find that the probability of a galaxy hosting a QSO is independent of the host dark matter halo mass of the galaxy. We also find that about 60 per cent of eBOSS QSOs are hosted by LRGs and about 20–40 per cent of QSOs are hosted by satellite galaxies. We find a slight preference for QSOs to populate satellite galaxies over central galaxies. This is connected to the host halo mass distribution of different types of galaxies. Based on our analysis, QSOs should be hosted by a very broad distribution of haloes, and their occurrence should be modulated only by the efficiency of galaxy formation processes.


2021 ◽  
Vol 504 (1) ◽  
pp. 65-88
Author(s):  
Abhijeet Anand ◽  
Dylan Nelson ◽  
Guinevere Kauffmann

ABSTRACT In order to study the circumgalactic medium (CGM) of galaxies we develop an automated pipeline to estimate the optical continuum of quasars and detect intervening metal absorption line systems with a matched kernel convolution technique and adaptive S/N criteria. We process ∼ one million quasars in the latest Data Release 16 (DR16) of the Sloan Digital Sky Survey (SDSS) and compile a large sample of ∼ 160 000 Mg ii absorbers, together with ∼ 70 000 Fe ii systems, in the redshift range 0.35 &lt; zabs &lt; 2.3. Combining these with the SDSS DR16 spectroscopy of ∼1.1 million luminous red galaxies (LRGs) and ∼200 000 emission line galaxies (ELGs), we investigate the nature of cold gas absorption at 0.5 &lt; z &lt; 1. These large samples allow us to characterize the scale dependence of Mg ii with greater accuracy than in previous work. We find that there is a strong enhancement of Mg ii absorption within ∼50 kpc of ELGs, and the covering fraction within 0.5rvir of ELGs is 2–5 times higher than for LRGs. Beyond 50 kpc, there is a sharp decline in Mg ii for both kinds of galaxies, indicating a transition to the regime where the CGM is tightly linked with the dark matter halo. The Mg ii-covering fraction correlates strongly with stellar mass for LRGs, but weakly for ELGs, where covering fractions increase with star formation rate. Our analysis implies that cool circumgalactic gas has a different physical origin for star-forming versus quiescent galaxies.


2021 ◽  
Vol 502 (3) ◽  
pp. 3599-3617
Author(s):  
Boryana Hadzhiyska ◽  
Sandro Tacchella ◽  
Sownak Bose ◽  
Daniel J Eisenstein

ABSTRACT We employ the hydrodynamical simulation IllustrisTNG-300-1 to explore the halo occupation distribution (HOD) and environmental dependence of luminous star-forming emission-line galaxies (ELGs) at z ∼ 1. Such galaxies are key targets for current and upcoming cosmological surveys. We select model galaxies through cuts in colour–colour space allowing for a direct comparison with the Extended Baryon Oscillation Spectroscopic Survey and the Dark Energy Spectroscopic Instrument (DESI) surveys and then compare them with galaxies selected based on specific star formation rate (sSFR) and stellar mass. We demonstrate that the ELG populations are twice more likely to reside in lower density regions (sheets) compared with the mass-selected populations and twice less likely to occupy the densest regions of the cosmic web (knots). We also show that the colour-selected and sSFR-selected ELGs exhibit very similar occupation and clustering statistics, finding that the agreement is best for lower redshifts. In contrast with the mass-selected sample, the occupation of haloes by a central ELG peaks at ∼20 per cent. We furthermore explore the dependence of the HOD and the autocorrelation on environment, noticing that at fixed halo mass, galaxies in high-density regions cluster about 10 times more strongly than low-density ones. This result suggests that we should model carefully the galaxy–halo relation and implement assembly bias effects into our models (estimated at ∼4 per cent of the clustering of the DESI colour-selected sample at z = 0.8). Finally, we apply a simple mock recipe to recover the clustering on large scales (r ≳ 1 Mpc h−1) to within 1 per cent by augmenting the HOD model with an environment dependence, demonstrating the power of adopting flexible population models.


Sign in / Sign up

Export Citation Format

Share Document