scholarly journals Mass and shape of the Milky Way’s dark matter halo with globular clusters from Gaia and Hubble

2019 ◽  
Vol 621 ◽  
pp. A56 ◽  
Author(s):  
Lorenzo Posti ◽  
Amina Helmi

Aims. We estimate the mass of the inner (< 20 kpc) Milky Way and the axis ratio of its inner dark matter halo using globular clusters as tracers. At the same time, we constrain the distribution in phase-space of the globular cluster system around the Galaxy. Methods. We use the Gaia Data Release 2 catalogue of 75 globular clusters’ proper motions and recent measurements of the proper motions of another 20 distant clusters obtained with the Hubble Space Telescope. We describe the globular cluster system with a distribution function (DF) with two components: a flat, rotating disc-like one and a rounder, more extended halo-like one. While fixing the Milky Way’s disc and bulge, we let the mass and shape of the dark matter halo and we fit these two parameters, together with six others describing the DF, with a Bayesian method. Results. We find the mass of the Galaxy within 20 kpc to be M(<20 kpc) = 1.91−0.17+0.18×1011 M⊙, of which MDM(<20 kpc) = 1.37−0.17+0.18×1011 M⊙ is in dark matter, and the density axis ratio of the dark matter halo to be q = 1.30 ± 0.25. Assuming a concentration-mass relation, this implies a virial mass Mvir = 1.3±0.3×1012 M⊙. Our analysis rules out oblate (q <  0.8) and strongly prolate halos (q >  1.9) with 99% probability. Our preferred model reproduces well the observed phase-space distribution of globular clusters and has a disc component that closely resembles that of the Galactic thick disc. The halo component follows a power-law density profile ρ ∝ r−3.3, has a mean rotational velocity of Vrot ≃ −14km s−1 at 20 kpc, and has a mildly radially biased velocity distribution (β ≃ 0.2 ± 0.07, which varies significantly with radius only within the inner 15 kpc). We also find that our distinction between disc and halo clusters resembles, although not fully, the observed distinction in metal-rich ([Fe/H] > −0.8) and metal-poor ([Fe/H] ≤ −0.8) cluster populations.

1988 ◽  
Vol 126 ◽  
pp. 37-48
Author(s):  
Robert Zinn

Harlow Shapley (1918) used the positions of globular clusters in space to determine the dimensions of our Galaxy. His conclusion that the Sun does not lie near the center of the Galaxy is widely recognized as one of the most important astronomical discoveries of this century. Nearly as important, but much less publicized, was his realization that, unlike stars, open clusters, HII regions and planetary nebulae, globular clusters are not concentrated near the plane of the Milky Way. His data showed that the globular clusters are distributed over very large distances from the galactic plane and the galactic center. Ever since this discovery that the Galaxy has a vast halo containing globular clusters, it has been clear that these clusters are key objects for probing the evolution of the Galaxy. Later work, which showed that globular clusters are very old and, on average, very metal poor, underscored their importance. In the spirit of this research, which started with Shapley's, this review discusses the characteristics of the globular cluster system that have the most bearing on the evolution of the Galaxy.


1996 ◽  
Vol 174 ◽  
pp. 401-402
Author(s):  
E. Vesperini

Recent surveys of the observational properties of galactic globular clusters have shown the existence of interesting correlations and trends between structural parameters and between structural parameters and location inside the Galaxy (Chernoff & Djorgovski 1989, Djorgovski & Meylan 1994). The origin of most of these correlations is not clear yet and it is not clear to what extent they reflect the primordial conditions or the result of evolution. We have carried out a set of simulations following the evolution of the properties of a globular cluster system (mass function, spatial distribution, correlations between structural parameters) starting from given initial conditions. The evolution of each individual cluster has been followed by the same method applied by Chernoff et al. (1986) and Chernoff & Shapiro (1987). The effects of internal relaxation, disk shocking and dynamical friction have been considered. The main goal of the analysis is that of establishing the role of initial conditions and evolutionary processes in determining the present observational properties.


2014 ◽  
Vol 10 (S309) ◽  
pp. 348-348
Author(s):  
Matthew Taylor ◽  
Thomas Puzia ◽  
Matias Gomez ◽  
Kristin Woodley

AbstractDynamical mass estimates (${\cal M}_{\rm dyn}$) and mass-to-light ratios ($\Upsilon_{\rm dyn}$) were derived for a sample of NGC 5128's globular clusters (GCs). We find two distinct sequences in the $\Upsilon_{\rm dyn}$ − ${\cal M}_{\rm dyn}$ plane, which are well fit by power laws of the forms $\Upsilon_{\rm dyn}\propto {\cal M}_{\rm dyn}^{0.33\pm0.04}$ and $\Upsilon_{\rm dyn}\propto {\cal M}_{\rm dyn}^{0.91\pm0.04}$. The former traces bright “classical” GCs, and the latter represents objects that are dynamically dominated by large dark matter components or by abnormally massive central black holes.


Galaxies ◽  
2017 ◽  
Vol 5 (3) ◽  
pp. 30 ◽  
Author(s):  
Ana Ennis ◽  
Lilia Bassino ◽  
Juan Caso

2021 ◽  
Vol 922 (2) ◽  
pp. 104
Author(s):  
Raymond G. Carlberg ◽  
Carl J. Grillmair

Abstract The proper motions of stars in the outskirts of globular clusters are used to estimate cluster velocity dispersion profiles as far as possible within their tidal radii. We use individual color–magnitude diagrams to select high-probability cluster stars for 25 metal-poor globular clusters within 20 kpc of the Sun, 19 of which have substantial numbers of stars at large radii. Of the 19, 11 clusters have a falling velocity dispersion in the 3–6 half-mass radii range, 6 are flat, and 2 plausibly have a rising velocity dispersion. The profiles are all in the range expected from simulated clusters that started at high redshift in a zoom-in cosmological simulation. The 11 clusters with falling velocity dispersion profiles are consistent with no dark matter above the Galactic background. The six clusters with approximately flat velocity dispersion profiles could have local dark matter, but are ambiguous. The two clusters with rising velocity dispersion profiles are consistent with a remnant local dark matter halo, but need membership confirmation and detailed orbital modeling to further test these preliminary results.


1993 ◽  
Vol 402 ◽  
pp. L53 ◽  
Author(s):  
Emilio J. Alfaro ◽  
Jesus Cabrera-Cano ◽  
Antonio J. Delgado

2019 ◽  
Vol 14 (S351) ◽  
pp. 442-446
Author(s):  
Alessandra Mastrobuono-Battisti ◽  
Sergey Khoperskov ◽  
Paola Di Matteo ◽  
Misha Haywood

AbstractThe Galactic globular cluster system went and is still going through dynamical processes that require to be explored in detail. Here we illustrate how primordial massive globular clusters born in the Milky Way’s disc evolved by stripping material from each other or even merging very early during their lives. These processes might explain the puzzling presence of star-by-star spreads in iron content observed in massive globular clusters and should be taken into account when studying globular cluster stellar populations. In this context, we show how the direct comparison between the predictions provided by our direct N-body simulations and observations can shed light on the origin and chemo-dynamical evolution of globular clusters.


2020 ◽  
Vol 492 (4) ◽  
pp. 5102-5120
Author(s):  
Ryan Leaman ◽  
Tomás Ruiz-Lara ◽  
Andrew A Cole ◽  
Michael A Beasley ◽  
Alina Boecker ◽  
...  

ABSTRACT Recent photometric observations revealed a massive, extended (MGC ≳ 105 M⊙; Rh ∼ 14 pc) globular cluster (GC) in the central region (D3D ≲ 100 pc) of the low-mass (M* ∼ 5 × 106 M⊙) dwarf irregular galaxy Pegasus. This massive GC offers a unique opportunity to study star cluster inspiral as a mechanism for building up nuclear star clusters, and the dark matter (DM) density profile of the host galaxy. Here, we present spectroscopic observations indicating that the GC has a systemic velocity of ΔV = 3 ± 8 km s−1 relative to the host galaxy, and an old, metal-poor stellar population. We run a suite of orbital evolution models for a variety of host potentials (cored to cusped) and find that the GC’s observed tidal radius (which is ∼3 times larger than the local Jacobi radius), relaxation time, and relative velocity are consistent with it surviving inspiral from a distance of Dgal ≳ 700 pc (up to the maximum tested value of Dgal = 2000 pc). In successful trials, the GC arrives to the galaxy centre only within the last ∼1.4 ± 1 Gyr. Orbits that arrive in the centre and survive are possible in DM haloes of nearly all shapes, however to satisfy the GC’s structural constraints a galaxy DM halo with mass MDM ≃ 6 ± 2 × 109 M⊙, concentration c ≃ 13.7 ± 0.6, and an inner slope to the DM density profile of −0.9 ≤ γ ≤ −0.5 is preferred. The gas densities necessary for its creation and survival suggest the GC could have formed initially near the dwarf’s centre, but then was quickly relocated to the outskirts where the weaker tidal field permitted an increased size and relaxation time – with the latter preserving the former during subsequent orbital decay.


2007 ◽  
Vol 3 (S246) ◽  
pp. 394-402
Author(s):  
Stephen E. Zepf

AbstractThis paper reviews some of the observational properties of globular cluster systems, with a particular focus on those that constrain and inform models of the formation and dynamical evolution of globular cluster systems. I first discuss the observational determination of the globular cluster luminosity and mass function. I show results from new very deep HST data on the M87 globular cluster system, and discuss how these constrain models of evaporation and the dynamical evolution of globular clusters. The second subject of this review is the question of how to account for the observed constancy of the globular cluster mass function with distance from the center of the host galaxy. The problem is that a radial trend is expected for isotropic cluster orbits, and while the orbits are observed to be roughly isotropic, no radial trend in the globular cluster system is observed. I review three extant proposals to account for this, and discuss observations and calculations that might determine which of these is most correct. The final subject is the origin of the very weak mass-radius relation observed for globular clusters. I discuss how this strongly constrains how globular clusters form and evolve. I also note that the only viable current proposal to account for the observed weak mass-radius relation naturally effects the globular cluster mass function, and that these two problems may be closely related.


Sign in / Sign up

Export Citation Format

Share Document