scholarly journals Starspot activity of HD 199178

2019 ◽  
Vol 625 ◽  
pp. A79 ◽  
Author(s):  
T. Hackman ◽  
I. Ilyin ◽  
J. J. Lehtinen ◽  
O. Kochukhov ◽  
M. J. Käpylä ◽  
...  

Context. Studying the spots of late-type stars is crucial for distinguishing between the various proposed dynamo mechanisms believed to be the main cause of starspot activity. For this research it is important to collect observation time series that are long enough to unravel both long- and short-term spot evolution. Doppler imaging is a very efficient method for studying spots of stars that cannot be angularly resolved. Aims. High-resolution spectral observations during 1994–2017 are analysed in order to reveal long- and short-term changes in the spot activity of the FK Comae-type subgiant HD 199178. Methods. Most of the observations were collected with the Nordic Optical Telescope. The Doppler imaging temperature maps were calculated using an inversion technique based on Tikhonov regularisation and utilising multiple spectral lines. Results. We present a unique series of 41 temperature maps spanning more than 23 years. All reliable images show a large cool spot region centred near the visible rotation pole. Some lower latitude cool features are also recovered, although the reliability of these is questionable. There is an expected anti-correlation between the mean surface temperature and the spot coverage. Using the Doppler images, we construct the equivalent of a solar butterfly diagram for HD 199178. Conclusions. HD 199178 clearly has a long-term large and cool spot structure at the rotational pole. This spot structure dominated the spot activity during the years 1994–2017. The size and position of the structure has evolved with time, with a gradual increase during the last years. The lack of lower latitude features prevents the determination of a possible differential rotation.

2019 ◽  
Vol 629 ◽  
pp. A120 ◽  
Author(s):  
Elizabeth M. Cole-Kodikara ◽  
Maarit J. Käpylä ◽  
Jyri J. Lehtinen ◽  
Thomas Hackman ◽  
Ilya V. Ilyin ◽  
...  

Context. LQ Hya is one of the most frequently studied young solar analogue stars. Recently, it has been observed to show intriguing behaviour when analysing long-term photometry. For instance, from 2003–2009, a coherent spot structure migrating in the rotational frame was reported by various authors. However, ever since, the star has entered a chaotic state where coherent structures seem to have disappeared and rapid phase jumps of the photometric minima occur irregularly over time. Aims. LQ Hya is one of the stars included in the SOFIN/FIES long-term monitoring campaign extending over 25 yr. Here, we publish new temperature maps for the star during 2006–2017, covering the chaotic state of the star. Methods. We used a Doppler imaging technique to derive surface temperature maps from high-resolution spectra. Results. From the mean temperatures of the Doppler maps, we see a weak but systematic increase in the surface temperature of the star. This is consistent with the simultaneously increasing photometric magnitude. During nearly all observing seasons, we see a high-latitude spot structure which is clearly non-axisymmetric. The phase behaviour of this structure is very chaotic but agrees reasonably well with the photometry. Equatorial spots are also frequently seen, but we interpret many of them to be artefacts due to the poor to moderate phase coverage. Conclusions. Even during the chaotic phase of the star, the spot topology has remained very similar to the higher activity epochs with more coherent and long-lived spot structures. In particular, we see high-latitude and equatorial spot activity, the mid latitude range still being most often void of spots. We interpret the erratic jumps and drifts in phase of the photometric minima to be caused by changes in the high-latitude spot structure rather than the equatorial spots.


Author(s):  
O. Yu. Atkov ◽  
S. G. Gorokhova

The individual dynamics of the allostatic load index was revealed mainly due to changes in the glucose level, body mass index, which makes it applicable for assessing the short-term adaptation to the stay in the conditions of shift work


1996 ◽  
Vol 176 ◽  
pp. 53-60 ◽  
Author(s):  
J.-F. Donati

In this paper, I will review the capabilities of magnetic imaging (also called Zeeman-Doppler imaging) to reconstruct spot distributions of surface fields from sets of rotationnally modulated Zeeman signatures in circularly polarised spectral lines. I will then outline a new method to measure small amplitude magnetic signals (typically 0.1% for cool active stars) with very high accuracy. Finally, I will present and comment new magnetic images reconstructed from data collected in 1993 December at the Anglo-Australian Telescope (AAT).


Atoms ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 29
Author(s):  
Sylvie Sahal-Bréchot

The present paper revisits the determination of the semi-classical limit of the Feshbach resonances which play a role in electron impact broadening (the so-called “Stark“ broadening) of isolated spectral lines of ionized atoms. The Gailitis approximation will be used. A few examples of results will be provided, showing the importance of the role of the Feshbach resonances.


2010 ◽  
Vol 6 (S273) ◽  
pp. 89-95 ◽  
Author(s):  
A. F. Lanza

AbstractThe photospheric spot activity of some of the stars with transiting planets discovered by the CoRoT space experiment is reviewed. Their out-of-transit light modulations are fitted by a spot model previously tested with the total solar irradiance variations. This approach allows us to study the longitude distribution of the spotted area and its variations versus time during the five months of a typical CoRoT time series. The migration of the spots in longitude provides a lower limit for the surface differential rotation, while the variation of the total spotted area can be used to search for short-term cycles akin the solar Rieger cycles. The possible impact of a close-in giant planet on stellar activity is also discussed.


Sign in / Sign up

Export Citation Format

Share Document