scholarly journals Search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1

2019 ◽  
Vol 626 ◽  
pp. A117 ◽  
Author(s):  
◽  
E. Kankare ◽  
M. Huber ◽  
S. J. Smartt ◽  
K. Chambers ◽  
...  

In order to identify the sources of the observed diffuse high-energy neutrino flux, it is crucial to discover their electromagnetic counterparts. To increase the sensitivity of detecting counterparts of transient or variable sources by telescopes with a limited field of view, IceCube began releasing alerts for single high-energy (Eν >  60 TeV) neutrino detections with sky localisation regions of order 1° radius in 2016. We used Pan-STARRS1 to follow-up five of these alerts during 2016–2017 to search for any optical transients that may be related to the neutrinos. Typically 10–20 faint (miP1 ≲ 22.5 mag) extragalactic transients are found within the Pan-STARRS1 footprints and are generally consistent with being unrelated field supernovae (SNe) and AGN. We looked for unusual properties of the detected transients, such as temporal coincidence of explosion epoch with the IceCube timestamp, or other peculiar light curve and physical properties. We found only one transient that had properties worthy of a specific follow-up. In the Pan-STARRS1 imaging for IceCube-160427A (probability to be of astrophysical origin of ∼50%), we found a SN PS16cgx, located at 10.0′ from the nominal IceCube direction. Spectroscopic observations of PS16cgx showed that it was an H-poor SN at redshift z = 0.2895 ± 0.0001. The spectra and light curve resemble some high-energy Type Ic SNe, raising the possibility of a jet driven SN with an explosion epoch temporally coincident with the neutrino detection. However, distinguishing Type Ia and Type Ic SNe at this redshift is notoriously difficult. Based on all available data we conclude that the transient is more likely to be a Type Ia with relatively weak Si II absorption and a fairly normal rest-frame r-band light curve. If, as predicted, there is no high-energy neutrino emission from Type Ia SNe, then PS16cgx must be a random coincidence, and unrelated to the IceCube-160427A. We find no other plausible optical transient for any of the five IceCube events observed down to a 5σ limiting magnitude of miP1 ≈ 22 mag, between 1 day and 25 days after detection.

2019 ◽  
Vol 207 ◽  
pp. 02001
Author(s):  
Anna Franckowiak

In September 22, 2017, IceCube released a public alert announcing the detection of a 290 TeV neutrino track event with an angular uncertainty of one square degree (90% containment). A multi-messenger follow-up campaign was initiated resulting in the detection of a GeV gamma-ray flare by the Fermi Large Area Telescope positionally consistent with the location of the known Bl Lac object, TXS 0506+056 , located only 0.1 degrees from the best-fit neutrino position. The probability of finding a GeV gamma-ray flare in coincidence with a high-energy neutrino event assuming a correlation of the neutrino flux with the gamma-ray energy flux in the energy band between 1 and 100 GeV was calculated to be 3σ (after trials correction). Following the detection of the flaring blazar the imaging air Cherenkov telescope MAGIC detected the source for the first time in the > 100 GeV gamma-ray band. The activity of the source was confirmed in X-ray, optical and radio wavelength. Several groups have developed lepto-hadronic models which succeed to explain the multi-messenger spectral energy distribution.


1990 ◽  
Vol 331 (1) ◽  
pp. 153-172 ◽  
Author(s):  
Jane H. MacGibbon ◽  
Robert H. Brandenberger

2008 ◽  
Vol 77 (4) ◽  
Author(s):  
E. Borriello ◽  
A. Cuoco ◽  
G. Mangano ◽  
G. Miele ◽  
S. Pastor ◽  
...  

2015 ◽  
Vol 70 ◽  
pp. 62-80 ◽  
Author(s):  
P. Allison ◽  
J. Auffenberg ◽  
R. Bard ◽  
J.J. Beatty ◽  
D.Z. Besson ◽  
...  

2018 ◽  
Vol 98 (2) ◽  
Author(s):  
P. W. Gorham ◽  
P. Allison ◽  
O. Banerjee ◽  
L. Batten ◽  
J. J. Beatty ◽  
...  

2019 ◽  
Vol 489 (3) ◽  
pp. 4347-4366 ◽  
Author(s):  
Foteini Oikonomou ◽  
Kohta Murase ◽  
Paolo Padovani ◽  
Elisa Resconi ◽  
Peter Mészáros

ABSTRACT Motivated by the recently reported evidence of an association between a high-energy neutrino and a γ-ray flare from the blazar TXS 0506+056, we calculate the expected high-energy neutrino signal from past, individual flares, from 12 blazars, selected in declinations favourable for detection with IceCube. To keep the number of free parameters to a minimum, we mainly focus on BL Lac objects and assume the synchrotron self-Compton mechanism produces the bulk of the high-energy emission. We consider a broad range of the allowed parameter space for the efficiency of proton acceleration, the proton content of BL Lac jets, and the presence of external photon fields. To model the expected neutrino fluence, we use simultaneous multiwavelength observations. We find that in the absence of external photon fields and with jet proton luminosity normalized to match the observed production rate of ultrahigh-energy cosmic rays, individual flaring sources produce a modest neutrino flux in IceCube, $N^{\mathrm{IC,10 \,yr}}_{\nu _{\mu },{\mathrm{\gt 100~TeV}}} \lesssim 10^{-3}$ muon neutrinos with energy exceeding 100 TeV, stacking 10 yr of flare periods selected in the >800 MeV Fermi energy range, from each source. Under optimistic assumptions about the jet proton luminosity and in the presence of external photon fields, we find that the two most powerful sources in our sample, AO 0235+164, and OJ 287, would produce, in total, $N^{\mathrm{IC \times 10,10 \,yr}}_{\nu _{\mu }, \rm all~flares, \gt 100~TeV} \approx 3$ muon neutrinos during Fermi flaring periods, in future neutrino detectors with total instrumented volume ∼10 times larger than IceCube, or otherwise, constrain the proton luminosity of blazar jets.


Sign in / Sign up

Export Citation Format

Share Document