scholarly journals The grain size survival threshold in one-planet post-main-sequence exoplanetary systems

2020 ◽  
Vol 637 ◽  
pp. A14
Author(s):  
Euaggelos E. Zotos ◽  
Dimitri Veras

The size distribution and orbital architecture of dust, grains, boulders, asteroids, and major planets during the giant branch phases of evolution dictate the preponderance and observability of the eventual debris, which have been found to surround white dwarfs and pollute their atmospheres with metals. Here, we utilize the photogravitational planar restricted three-body problem in one-planet giant branch systems in order to characterize the orbits of grains as the parent star luminosity and mass undergo drastic changes. We perform a detailed dynamical analysis of the character of grain orbits (collisional, escape, or bounded) as a function of location and energy throughout giant branch evolution. We find that for stars with main-sequence masses of 2.0 M⊙, giant branch evolution, combined with the presence of a planet, ubiquitously triggers escape in grains smaller than about 1 mm, while leaving grains larger than about 5 cm bound to the star. This result is applicable for systems with either a terrestrial or giant planet, is largely independent of the location of the planet, and helps establish a radiative size threshold for escape of small particles in giant branch planetary systems.

2020 ◽  
Vol 633 ◽  
pp. A30 ◽  
Author(s):  
L. Mancini ◽  
P. Sarkis ◽  
Th. Henning ◽  
G. Á. Bakos ◽  
D. Bayliss ◽  
...  

Context. The transiting exoplanetary system WASP-174 was reported to be composed by a main-sequence F star (V = 11.8 mag) and a giant planet, WASP-174b (orbital period Porb = 4.23 days). However only an upper limit was placed on the planet mass (<1.3 MJup), and a highly uncertain planetary radius (0.7−1.7 RJup) was determined. Aims. We aim to better characterise both the star and the planet and precisely measure their orbital and physical parameters. Methods. In order to constrain the mass of the planet, we obtained new measurements of the radial velocity of the star and joined them with those from the discovery paper. Photometric data from the HATSouth survey and new multi-band, high-quality (precision reached up to 0.37 mmag) photometric follow-up observations of transit events were acquired and analysed for getting accurate photometric parameters. We fit the model to all the observations, including data from the TESS space telescope, in two different modes: incorporating the stellar isochrones into the fit, and using an empirical method to get the stellar parameters. The two modes resulted to be consistent with each other to within 2σ. Results. We confirm the grazing nature of the WASP-174b transits with a confidence level greater than 5σ, which is also corroborated by simultaneously observing the transit through four optical bands and noting how the transit depth changes due to the limb-darkening effect. We estimate that ≈76% of the disk of the planet actually eclipses the parent star at mid-transit of its transit events. We find that WASP-174b is a highly-inflated hot giant planet with a mass of Mp = 0.330 ± 0.091 MJup and a radius of Rp = 1.435 ± 0.050 RJup, and is therefore a good target for transmission-spectroscopy observations. With a density of ρp = 0.135 ± 0.042 g cm−3, it is amongst the lowest-density planets ever discovered with precisely measured mass and radius.


Author(s):  
David D. Nolte

This chapter presents the history of the development of the concept of phase space. Phase space is the central visualization tool used today to study complex systems. The chapter describes the origins of phase space with the work of Joseph Liouville and Carl Jacobi that was later refined by Ludwig Boltzmann and Rudolf Clausius in their attempts to define and explain the subtle concept of entropy. The turning point in the history of phase space was when Henri Poincaré used phase space to solve the three-body problem, uncovering chaotic behavior in his quest to answer questions on the stability of the solar system. Phase space was established as the central paradigm of statistical mechanics by JW Gibbs and Paul Ehrenfest.


1997 ◽  
Vol 22 (1) ◽  
pp. 37-60 ◽  
Author(s):  
A. Santander ◽  
J. Mahecha ◽  
F. Pérez

New Astronomy ◽  
2021 ◽  
Vol 84 ◽  
pp. 101510
Author(s):  
Md Sanam Suraj ◽  
Rajiv Aggarwal ◽  
Md Chand Asique ◽  
Amit Mittal

Sign in / Sign up

Export Citation Format

Share Document