scholarly journals Nucleosynthesis imprints from different Type Ia supernova explosion scenarios and implications for galactic chemical evolution

2020 ◽  
Vol 644 ◽  
pp. A118
Author(s):  
F. Lach ◽  
F. K. Röpke ◽  
I. R. Seitenzahl ◽  
B. Coté ◽  
S. Gronow ◽  
...  

We analyze the nucleosynthesis yields of various Type Ia supernova explosion simulations including pure detonations in sub-Chandrasekhar mass white dwarfs; double detonations and pure helium detonations of sub-Chandrasekhar mass white dwarfs with an accreted helium envelope; a violent merger model of two white dwarfs; and deflagrations and delayed detonations in Chandrasekhar mass white dwarfs. We focus on the iron peak elements Mn, Zn, and Cu. To this end, we also briefly review the different burning regimes and production sites of these elements, as well as the results of abundance measurements and several galactic chemical evolution studies. We find that super-solar values of [Mn/Fe] are not restricted to Chandrasekhar mass explosion models. Scenarios including a helium detonation can significantly contribute to the production of Mn, in particular the models proposed for calcium-rich transients. Although Type Ia supernovae are often not accounted for as production sites of Zn and Cu, our models involving helium shell detonations can produce these elements in super-solar ratios relative to Fe. Our results suggest a re-consideration of Type Ia supernova yields in galactic chemical evolution models. A detailed comparison with observations can provide new insight into the progenitor and explosion channels of these events.

2006 ◽  
Vol 372 (1) ◽  
pp. 265-275 ◽  
Author(s):  
F. Matteucci ◽  
N. Panagia ◽  
A. Pipino ◽  
F. Mannucci ◽  
S. Recchi ◽  
...  

2009 ◽  
Vol 501 (2) ◽  
pp. 531-538 ◽  
Author(s):  
F. Matteucci ◽  
E. Spitoni ◽  
S. Recchi ◽  
R. Valiante

2011 ◽  
Vol 7 (S281) ◽  
pp. 335-336
Author(s):  
T. Usuda ◽  
O. Krause ◽  
M. Tanaka ◽  
T. Hattori ◽  
M. Goto ◽  
...  

AbstractWe successfully obtained the first optical spectra of the faint light echoes around Cassiopeia A and Tycho Brahe's supernova remnants (SNRs) with FOCAS and the Subaru Telescope. We conclude that Cas A and Tycho's SN 1572 belong to the Type IIb and normal Type Ia supernovae, respectively. Light echo spectra are important in order to obtain further insight into the supernova explosion mechanism of Tycho's SN 1572: how the Type Ia explosion actually proceeds, and whether accretion occurs from a companion or by the merging of two white dwarfs. The proximity of the SN 1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. Future light-echo spectra, obtained in different spatial directions of SN 1572, will enable to construct a three-dimensional spectroscopic view of the explosion.


2019 ◽  
Vol 488 (3) ◽  
pp. 3949-3956
Author(s):  
Takashi J Moriya ◽  
Dongdong Liu ◽  
Bo Wang ◽  
Zheng-Wei Liu

ABSTRACT We investigate the predicted circumstellar properties of Type Ia supernova progenitor systems with non-degenerate helium star donors. It has been suggested that systems consisting of a carbon + oxygen white dwarf and a helium star can lead to Type Ia supernova explosions. Binary evolution calculations for the helium star donor channel predict that such a progenitor system is in either a stable helium-shell burning phase or a weak helium-shell flash phase at the time of the Type Ia supernova explosion. By using the binary evolution models from our previous study, we show that a large fraction of the progenitor systems with a helium star donor have a low enough density to explain the current non-detection of radio emission from Type Ia supernovae. Most of the progenitor systems in the weak helium-shell flash phase at the time of the Type Ia supernova explosion, which may dominate the prompt (short delay time) Type Ia supernova population, have both a low circumstellar density and a faint helium star donor, which could account for the non-detection of radio emission and a pre-explosion companion star in SN 2011fe and SN 2014J. We also find some progenitor systems that are consistent with the properties of the companion star candidate identified at the explosion location of the Type Iax SN 2012Z.


2002 ◽  
Vol 187 ◽  
pp. 33-46
Author(s):  
K. Nomoto ◽  
C. Kobayashi ◽  
H. Umeda

The cosmic/galactic chemical evolutions have been modeled with the early metal enrichment by Type II supernovae (SNe II) and the delayed enrichment of Fe by Type Ia supernovae (SNe Ia). However, the exact nature of SN Ia progenitors have been obscure. Here we present the currently most plausible scenario of the progenitor binary systems of SNe Ia. This scenario involves strong winds from accreting white dwarfs, which introduces important metallicity effects, namely, low-metallicity inhibition of SNe Ia. Resultant predictions for the Galactic/cosmic chemical evolution and the cosmic SNe Ia rate are presented. Another importance of identifying the SN Ia progenitors lies in the use of SNe Ia as a “standard candle” to determine cosmological parameters. To examine whether the “evolution” of SNe Ia with redshift and metallicity is significant, we discuss how the metallicity affects the properties of the C+O white dwarfs such as the C/O ratio, and find the metallicity dependence is rather weak.


2011 ◽  
Vol 7 (S281) ◽  
pp. 267-274
Author(s):  
Stuart A. Sim ◽  
Friedrich K. Röpke ◽  
Markus Kromer ◽  
Michael Fink ◽  
Ashley J. Ruiter ◽  
...  

AbstractWe argue that detonations of sub-Chandrasekhar mass white dwarfs can lead to bright explosions with light curves and spectra similar to those of observed Type Ia supernovae. Given that binary systems containing accreting sub-Chandrasekhar mass white dwarfs should be common, this suggests that a non-negligible fraction of the observed Type Ia supernova rate may arise from sub-Chandrasekhar mass explosions, if they can be ignited. We discuss aspects of how such explosions might be realized in nature and both merits and challenges associated with invoking sub-Chandrasekhar mass explosion models to account for observed Type Ia supernovae.


1994 ◽  
Vol 147 ◽  
pp. 186-213
Author(s):  
J. Isern ◽  
R. Canal

AbstractIn this paper we review the behavior of growing stellar degenerate cores. It is shown that ONeMg white dwarfs and cold CO white dwarfs can collapse to form a neutron star. This collapse is completely silent since the total amount of radioactive elements that are expelled is very small and a burst of γ-rays is never produced. In the case of an explosion (always carbonoxygen cores), the outcome fits quite well the observed properties of Type Ia supernovae. Nevertheless, the light curves and the velocities measured at maximum are very homogeneous and the diversity introduced by igniting at different densities is not enough to account for the most extreme cases observed. It is also shown that a promising way out of this problem could be the He-induced detonation of white dwarfs with different masses. Finally, we outline that the location of the border line which separetes explosion from collapse strongly depends on the input physics adopted.


2006 ◽  
Vol 2 (14) ◽  
pp. 308-309
Author(s):  
Friedrich K. Röpke

AbstractKeeping up with ever more detailed observations, Type Ia supernova (SN Ia) explosion models have seen a brisk development over the past years. The aim is to construct a self-consistent picture of the physical processes in order to gain the predictive power necessary to answer questions arising from the application of SNe Ia as cosmological distance indicators. We review recent developments in modeling these objects focusing on three-dimensional simulations.


Sign in / Sign up

Export Citation Format

Share Document