scholarly journals Light-Echo Spectrum Reveals the Type of Tycho Brahe's 1572 Supernova

2011 ◽  
Vol 7 (S281) ◽  
pp. 335-336
Author(s):  
T. Usuda ◽  
O. Krause ◽  
M. Tanaka ◽  
T. Hattori ◽  
M. Goto ◽  
...  

AbstractWe successfully obtained the first optical spectra of the faint light echoes around Cassiopeia A and Tycho Brahe's supernova remnants (SNRs) with FOCAS and the Subaru Telescope. We conclude that Cas A and Tycho's SN 1572 belong to the Type IIb and normal Type Ia supernovae, respectively. Light echo spectra are important in order to obtain further insight into the supernova explosion mechanism of Tycho's SN 1572: how the Type Ia explosion actually proceeds, and whether accretion occurs from a companion or by the merging of two white dwarfs. The proximity of the SN 1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. Future light-echo spectra, obtained in different spatial directions of SN 1572, will enable to construct a three-dimensional spectroscopic view of the explosion.

2017 ◽  
Vol 12 (S331) ◽  
pp. 141-147 ◽  
Author(s):  
Michael Gabler ◽  
Hans-Thomas Janka ◽  
Annop Wongwathanarat

AbstractRecently, first neutrino-driven supernova explosions have been obtained in 3D, self-consistent, first-principle simulations, these models are still not always exploding robustly and, in general, the explosions are not sufficiently energetic. To constrain the explosion mechanism, and the related uncertainties, it is thus very helpful to consider observational constraints: pulsar kicks, progenitor association and supernova remnants (SNR). Recent observations of asymmetries in the supernova ejecta of Cas A are very promising, to compare to long-term simulations of the explosion. In addition 3D observations of SN87A are becoming more constraining on the geometry of the ejected material during the explosion. In this talk I will discuss our efforts to model the late time evolution of a 3D supernova explosion, where we include the effects of beta decay, which inflates the structures rich in 56Ni. The structures we find in the simulations depend on the quantities plotted.


2020 ◽  
Vol 644 ◽  
pp. A118
Author(s):  
F. Lach ◽  
F. K. Röpke ◽  
I. R. Seitenzahl ◽  
B. Coté ◽  
S. Gronow ◽  
...  

We analyze the nucleosynthesis yields of various Type Ia supernova explosion simulations including pure detonations in sub-Chandrasekhar mass white dwarfs; double detonations and pure helium detonations of sub-Chandrasekhar mass white dwarfs with an accreted helium envelope; a violent merger model of two white dwarfs; and deflagrations and delayed detonations in Chandrasekhar mass white dwarfs. We focus on the iron peak elements Mn, Zn, and Cu. To this end, we also briefly review the different burning regimes and production sites of these elements, as well as the results of abundance measurements and several galactic chemical evolution studies. We find that super-solar values of [Mn/Fe] are not restricted to Chandrasekhar mass explosion models. Scenarios including a helium detonation can significantly contribute to the production of Mn, in particular the models proposed for calcium-rich transients. Although Type Ia supernovae are often not accounted for as production sites of Zn and Cu, our models involving helium shell detonations can produce these elements in super-solar ratios relative to Fe. Our results suggest a re-consideration of Type Ia supernova yields in galactic chemical evolution models. A detailed comparison with observations can provide new insight into the progenitor and explosion channels of these events.


2008 ◽  
Vol 4 (S252) ◽  
pp. 379-382
Author(s):  
Xiangcun Meng ◽  
Xuefei Chen ◽  
Zhanwen Han

AbstractWe have carried out a detailed study of the single-degenerate channel for the progenitors of type Ia supernovae (SNe Ia). In the model, a carbon-oxygen white dwarf (CO WD) accretes hydrogen-rich material from an unevolved or a slightly evolved non-degenerate companion to increase its mass to Chandrasekhar mass limit. Incorporating the prescription of Hachisuet al. (1999a) for the accretion efficiency into Eggleton's stellar evolution code and assuming that the prescription is valid for all metallicities, we performed binary stellar evolution calculations for more than 25,000 close WD binary systems with various metallicities. The initial parameter spaces for SNe Ia are presented in an orbital period-secondary mass (logPi,M2i) plane for eachZ.Adopting the results above, we studied the birth rate of SNe Ia for variousZvia binary population synthesis. From the study, we see that for a highZ, SNe Ia occur systemically earlier and the peak value of the birth rate is larger if a single starburst is assumed. The Galactic birth rate from the channel is lower than (but comparable to) that inferred from observations.We also showed the distributions of the parameters of the binary systems at the moment of supernova explosion and the distributions of the properties of companions after supernova explosion. The former provides physics input to simulate the interaction between supernova ejecta and its companion, and the latter is helpful for searching the companions in supernova remnants.


2005 ◽  
Vol 192 ◽  
pp. 233-238
Author(s):  
Carles Badenes ◽  
Eduardo Bravo ◽  
Kazimierz J. Borkowski

SummaryWe propose to use the thermal X-ray emission from young supernova remnants (SNRs) originated in Type Ia supernovae (SNe) to extract relevant information concerning the explosion mechanism. We focus on the differences between numerical 1D and 3D explosion calculations, and the impact that these differences could have on the modeling of young SNRs. We use the remnant of the Tycho supernova (SN 1572) as a test case to compare with our predictions, discussing the observational features that allow to accept or discard a given model.


2006 ◽  
Vol 2 (14) ◽  
pp. 308-309
Author(s):  
Friedrich K. Röpke

AbstractKeeping up with ever more detailed observations, Type Ia supernova (SN Ia) explosion models have seen a brisk development over the past years. The aim is to construct a self-consistent picture of the physical processes in order to gain the predictive power necessary to answer questions arising from the application of SNe Ia as cosmological distance indicators. We review recent developments in modeling these objects focusing on three-dimensional simulations.


2009 ◽  
Vol 696 (2) ◽  
pp. 1491-1497 ◽  
Author(s):  
F. Ciaraldi-Schoolmann ◽  
W. Schmidt ◽  
J. C. Niemeyer ◽  
F. K. Röpke ◽  
W. Hillebrandt

Science ◽  
2007 ◽  
Vol 315 (5813) ◽  
pp. 825-828 ◽  
Author(s):  
P. A. Mazzali ◽  
F. K. Ropke ◽  
S. Benetti ◽  
W. Hillebrandt

Sign in / Sign up

Export Citation Format

Share Document