scholarly journals Observational constraints on the likelihood of 26Al in planet-forming environments

2020 ◽  
Vol 644 ◽  
pp. L1
Author(s):  
Megan Reiter

Recent work suggests that 26Al may determine the water budget in terrestrial exoplanets as its radioactive decay dehydrates planetesimals leading to rockier compositions. Here I consider the observed distribution of 26Al in the Galaxy and typical star-forming environments to estimate the likelihood of 26Al enrichment during planet formation. I do not assume Solar-System-specific constraints as I am interested in enrichment for exoplanets generally. Observations indicate that high-mass stars dominate the production of 26Al with nearly equal contributions from their winds and supernovae. Observed 26Al abundances are comparable to those in the early Solar System in the high-mass star-forming regions where most stars (and thereby most planets) form. These high abundances appear to be maintained for a few million years, which is much longer than the 0.7 Myr half-life. Observed bulk 26Al velocities are an order of magnitude slower than expected from winds and supernovae. These observations are at odds with typical model assumptions that 26Al is provided instantaneously by high velocity mass loss from supernovae and winds. The regular replenishment of 26Al, especially when coupled with the small age differences that are common in high-mass star-forming complexes, may significantly increase the number of star- and planet-forming systems exposed to 26Al. Exposure does not imply enrichment, but the order of magnitude slower velocity of 26Al may alter the fraction that is incorporated into planet-forming material. Together, this suggests that the conditions for rocky planet formation are not rare, nor are they ubiquitous, as small regions such as Taurus, that lack high-mass stars to produce 26Al may be less likely to form rocky planets. I conclude with suggested directions for future studies.

2018 ◽  
Vol 609 ◽  
pp. A129 ◽  
Author(s):  
L. Colzi ◽  
F. Fontani ◽  
P. Caselli ◽  
C. Ceccarelli ◽  
P. Hily-Blant ◽  
...  

The ratio between the two stable isotopes of nitrogen, 14N and 15N, is well measured in the terrestrial atmosphere (~272), and for the pre-solar nebula (~441, deduced from the solar wind). Interestingly, some pristine solar system materials show enrichments in 15N with respect to the pre-solar nebula value. However, it is not yet clear if and how these enrichments are linked to the past chemical history because we have only a limited number of measurements in dense star-forming regions. In this respect, dense cores, which are believed to be the precursors of clusters and also contain intermediate- and high-mass stars, are important targets because the solar system was probably born within a rich stellar cluster, and such clusters are formed in high-mass star-forming regions. The number of observations in such high-mass dense cores has remained limited so far. In this work, we show the results of IRAM-30 m observations of the J = 1−0 rotational transition of the molecules HCN and HNC and their 15N-bearing counterparts towards 27 intermediate- and high-mass dense cores that are divided almost equally into three evolutionary categories: high-mass starless cores, high-mass protostellar objects, and ultra-compact Hii regions. We have also observed the DNC(2–1) rotational transition in order to search for a relation between the isotopic ratios D/H and 14N/15N. We derive average 14N/15N ratios of 359 ± 16 in HCN and of 438 ± 21 in HNC, with a dispersion of about 150–200. We find no trend of the 14N/15N ratio with evolutionary stage. This result agrees with what has been found for N2H+ and its isotopologues in the same sources, although the 14N/15N ratios from N2H+ show a higher dispersion than in HCN/HNC, and on average, their uncertainties are larger as well. Moreover, we have found no correlation between D/H and 14N/15N in HNC. These findings indicate that (1) the chemical evolution does not seem to play a role in the fractionation of nitrogen, and that (2) the fractionation of hydrogen and nitrogen in these objects is not related.


2018 ◽  
Vol 14 (A30) ◽  
pp. 277-277
Author(s):  
L. Colzi ◽  
F. Fontani ◽  
V. M. Rivilla ◽  
A. Sánchez-Monge ◽  
L. Testi ◽  
...  

AbstractThere is a growing evidence that our Sun was born in a rich cluster that also contained massive stars. Therefore, the study of high-mass star-forming regions is key to understand our chemical heritage. In fact, molecules found in comets, in other pristine Solar System bodies and in protoplanetary disks, are enriched in 15N, because they show a lower 14N/15N ratio (100-150) with respect to the value representative of the Proto-Solar Nebula (PSN, 441 ± 6), but the reasons of this enrichment cannot be explained by current chemical models. Moreover, the 14N/15N ratio is important because from it we can learn more about the stellar nucleosynthesis processes that produces both the elements. In this sense observations of star-forming regions are useful to constrain Galactic chemical evolution (GCE) models.


2006 ◽  
Vol 2 (S237) ◽  
pp. 488-488
Author(s):  
T. Velusamy ◽  
D. Li ◽  
P. F. Goldsmith ◽  
W. D. Langer

Our goal is to study relatively quiescent dense gas cores, isolated from disruptive stars, to understand the initial conditions of massive star formation. Determining their mass, size, dynamical status, and core mass distribution is a starting point to understand the mechanisms for formation, collapse, and the origin of their IMF. We obtained CSO 350 μm, images of quiescent regions in Orion and detected 51 resolved or nearly resolved molecular cores with masses ranging from 0.1 M to 46 M (Li et al. 2006). The mean mass is 9.8 M, which is one order of magnitude higher than that of the resolved cores in low mass star forming regions, such as Taurus. Our sample includes largely thermally unstable cores, which implies that the cores are supported neither by thermal pressure nor by turbulence, and are probably supercritical. They are likely precursors of protostars.


2012 ◽  
Vol 8 (S289) ◽  
pp. 194-194
Author(s):  
H. Kobayashi ◽  

AbstractVERA is a Very Long Baseline Interferometry (VLBI) array for astrometry, composed of four 20 m radio telescopes. They are located over a range of around 2300 km in Japan. VERA consists of a two-beam system equipped with 2, 6.7, 8, 22, and 43 GHz receivers. The two-beam system is used for phase referencing of the VLBI observations, to compensate for atmospheric-turbulence effects between two nearby objects. It has achieved measurements of annual parallaxes within 5 kpc with 10% accuracy. Observed sources are water, SiO, and methanol masers, which are found in molecular gas around star-forming regions and evolved stars. We have carried out a large program of astrometry to reveal the Galaxy's structure and velocity field. VERA has already measured trigonometric parallaxes of more than 30 sources and observed around a hundred sources using the two-beam astrometry technique. Maser sources are associated with high-mass star-forming regions, which are thought to trace the arm structure of the Galaxy. Using annual parallax and proper-motion measurements, their structure will be shown without kinematic distance assumptions. Some sources exhibit large differences between trigonometric-parallax measurements and kinematic distances. We present the status of the VERA project as well as recent results.


2012 ◽  
Vol 538 ◽  
pp. A140 ◽  
Author(s):  
P. D. Klaassen ◽  
L. Testi ◽  
H. Beuther

2018 ◽  
Vol 609 ◽  
pp. A125 ◽  
Author(s):  
M. Wienen ◽  
F. Wyrowski ◽  
K. M. Menten ◽  
J. S. Urquhart ◽  
C. M. Walmsley ◽  
...  

Context. The initial conditions of molecular clumps in which high-mass stars form are poorly understood. In particular, a more detailed study of the earliest evolutionary phases is needed. The APEX Telescope Large Area Survey of the whole inner Galactic disk at 870 μm, ATLASGAL, has therefore been conducted to discover high-mass star-forming regions at different evolutionary phases. Aims. We derive properties such as velocities, rotational temperatures, column densities, and abundances of a large sample of southern ATLASGAL clumps in the fourth quadrant. Methods. Using the Parkes telescope, we observed the NH3 (1, 1) to (3, 3) inversion transitions towards 354 dust clumps detected by ATLASGAL within a Galactic longitude range between 300° and 359° and a latitude within ± 1.5°. For a subsample of 289 sources, the N2H+ (1–0) line was measured with the Mopra telescope. Results. We measured a median NH3 (1, 1) line width of ~ 2 km s-1, rotational temperatures from 12 to 28 K with a mean of 18 K, and source-averaged NH3 abundances from 1.6 × 10-6 to 10-8. For a subsample with detected NH3 (2, 2) hyperfine components, we found that the commonly used method to compute the (2, 2) optical depth from the (1, 1) optical depth and the (2, 2) to (1, 1) main beam brightness temperature ratio leads to an underestimation of the rotational temperature and column density. A larger median virial parameter of ~ 1 is determined using the broader N2H+ line width than is estimated from the NH3 line width of ~ 0.5 with a general trend of a decreasing virial parameter with increasing gas mass. We obtain a rising NH3 (1, 1)/N2H+ line-width ratio with increasing rotational temperature. Conclusions. A comparison of NH3 line parameters of ATLASGAL clumps to cores in nearby molecular clouds reveals smaller velocity dispersions in low-mass than high-mass star-forming regions and a warmer surrounding of ATLASGAL clumps than the surrounding of low-mass cores. The NH3 (1, 1) inversion transition of 49% of the sources shows hyperfine structure anomalies. The intensity ratio of the outer hyperfine structure lines with a median of 1.27 ± 0.03 and a standard deviation of 0.45 is significantly higher than 1, while the intensity ratios of the inner satellites with a median of 0.9 ± 0.02 and standard deviation of 0.3 and the sum of the inner and outer hyperfine components with a median of 1.06 ± 0.02 and standard deviation of 0.37 are closer to 1.


Author(s):  
Antonio Chrysostomou ◽  
Martin Houde ◽  
Brenda C. Matthews

2018 ◽  
Vol 617 ◽  
pp. A14 ◽  
Author(s):  
S. Paron ◽  
M. B. Areal ◽  
M. E. Ortega

Aims. Estimating molecular abundances ratios from directly measuring the emission of the molecules toward a variety of interstellar environments is indeed very useful to advance our understanding of the chemical evolution of the Galaxy, and hence of the physical processes related to the chemistry. It is necessary to increase the sample of molecular clouds, located at different distances, in which the behavior of molecular abundance ratios, such as the 13CO/C18O ratio, is studied in detail. Methods. We selected the well-studied high-mass star-forming region G29.96−0.02, located at a distance of about 6.2 kpc, which is an ideal laboratory to perform this type of study. To study the 13CO/C18O abundance ratio (X13∕18) toward this region, we used 12CO J = 3–2 data obtained from the CO High-Resolution Survey, 13CO and C18O J = 3–2 data from the 13CO/C18O (J = 3–2) Heterodyne Inner Milky Way Plane Survey, and 13CO and C18O J = 2–1 data retrieved from the CDS database that were observed with the IRAM 30 m telescope. The distribution of column densities and X13∕18 throughout the extension of the analyzed molecular cloud was studied based on local thermal equilibrium (LTE) and non-LTE methods. Results. Values of X13∕18 between 1.5 and 10.5, with an average of about 5, were found throughout the studied region, showing that in addition to the dependency of X13∕18 and the galactocentric distance, the local physical conditions may strongly affect this abundance ratio. We found that correlating the X13∕18 map with the location of the ionized gas and dark clouds allows us to suggest in which regions the far-UV radiation stalls in dense gaseous components, and in which regions it escapes and selectively photodissociates the C18O isotope. The non-LTE analysis shows that the molecular gas has very different physical conditions, not only spatially throughout the cloud, but also along the line of sight. This type of study may represent a tool for indirectly estimating (from molecular line observations) the degree of photodissociation in molecular clouds, which is indeed useful to study the chemistry in the interstellar medium.


Sign in / Sign up

Export Citation Format

Share Document