scholarly journals Quadrant polarization parameters for the scattered light of circumstellar disks. Analysis of debris disk models and observations of HR 4796A

Author(s):  
H. M. Schmid
2013 ◽  
Vol 8 (S299) ◽  
pp. 72-73 ◽  
Author(s):  
Matthew Wahl ◽  
Stanimir Metchev ◽  
Rahul Patel ◽  
Eugene Serabyn ◽  
Dimitri Mawet ◽  
...  

AbstractWe present first imaging results from the PALM-3000 adaptive optics system and PHARO camera on the Hale 5 m telescope. Observations using a vector vortex coronagraph have given us direct detections of the two-ring dusty debris system around the star HD 141569. Our observations reveal the inner clearing in the disk to unprecedentedly small angular separations, and are the most sensitive yet at the H and K bands. We are for the first time able to measure and compare the colors of the scattered light in the inner and outer dust rings, and find that the outer ring is significantly bluer than the inner ring.


2020 ◽  
Vol 633 ◽  
pp. A82 ◽  
Author(s):  
A. Garufi ◽  
H. Avenhaus ◽  
S. Pérez ◽  
S. P. Quanz ◽  
R. G. van Holstein ◽  
...  

Context. Near-IR polarimetric images of protoplanetary disks enable us to characterize substructures that might be due to the interaction with (forming) planets. The available census is strongly biased toward massive disks around old stars, however. Aims. The DARTTS program aims at alleviating this bias by imaging a large number of T Tauri stars with diverse properties. Methods. DARTTS-S employs VLT/SPHERE to image the polarized scattered light from disks. In parallel, DARTTS-A provides ALMA images of the same targets for a comparison of different dust components. In this work, we present new SPHERE images of 21 circumstellar disks, which is the largest sample released to date. We also recalculated some relevant stellar and disk properties following Gaia DR2. Results. The targets of this work are significantly younger than those published thus far with polarimetric near-IR (NIR) imaging. Scattered light is unambiguously resolved in 11 targets, and some polarized unresolved signal is detected in 3 additional sources. Some disk substructures are detected. However, the paucity of spirals and shadows from this sample reinforces the trend according to which these NIR features are associated with Herbig stars, either because they are older or more massive. Furthermore, disk rings that are apparent in ALMA observations of some targets do not appear to have corresponding detections with SPHERE. Inner cavities larger than ~15 au are also absent from our images, even though they are expected from the spectral energy distribution. On the other hand, 3 objects show extended filaments at larger scale that are indicative of strong interaction with the surrounding medium. All but one of the undetected disks are best explained by their limited size (≲20 au), and the high occurrence of stellar companions in these sources suggests an important role in limiting the disk size. One undetected disk is massive and very large at millimeter wavelengths, implying that it is self-shadowed in the NIR. Conclusions. This work paves the way toward a more complete and less biased sample of scattered-light observations, which is required to interpret how disk features evolve throughout the disk lifetime.


2019 ◽  
Vol 629 ◽  
pp. A141
Author(s):  
M. Kim ◽  
S. Wolf ◽  
A. Potapov ◽  
H. Mutschke ◽  
C. Jäger

Context. Water ice is important for the evolution and preservation of life. Identifying the distribution of water ice in debris disks is therefore of great interest in the field of astrobiology. Furthermore, icy dust grains are expected to play important roles throughout the entire planet formation process. However, currently available observations only allow deriving weak conclusions about the existence of water ice in debris disks. Aims. We investigate whether it is feasible to detect water ice in typical debris disk systems. We take the following ice destruction mechanisms into account: sublimation of ice, dust production through planetesimal collisions, and photosputtering by UV-bright central stars. We consider icy dust mixture particles with various shapes consisting of amorphous ice, crystalline ice, astrosilicate, and vacuum inclusions (i.e., porous ice grains). Methods. We calculated optical properties of inhomogeneous icy dust mixtures using effective medium theories, that is, Maxwell-Garnett rules. Subsequently, we generated synthetic debris disk observables, such as spectral energy distributions and spatially resolved thermal reemission and scattered light intensity and polarization maps with our code DMS. Results. We find that the prominent ~3 and 44 μm water ice features can be potentially detected in future observations of debris disks with the James Webb Space Telescope (JWST) and the Space Infrared telescope for Cosmology and Astrophysics (SPICA). We show that the sublimation of ice, collisions between planetesimals, and photosputtering caused by UV sources clearly affect the observational appearance of debris disk systems. In addition, highly porous ice (or ice-rich aggregates) tends to produce highly polarized radiation at around 3 μm. Finally, the location of the ice survival line is determined by various dust properties such as a fractional ratio of ice versus dust, physical states of ice (amorphous or crystalline), and the porosity of icy grains.


2013 ◽  
Vol 8 (S299) ◽  
pp. 313-317
Author(s):  
Meredith MacGregor

AbstractImaging debris disks at millimeter wavelengths is important, because emission at these long wavelengths is dominated by large grains with dynamics similar to the population of dust-producing planetesimals. We have used the SMA and ALMA to make 1.3 millimeter observations of the debris disk surrounding the nearby (9.9 pc), ~10 Myr-old, M-type flare star AU Microscopii. We characterize the disk by implementing Markov Chain Monte Carlo methods to fit parametric models to the visibilities. The millimeter observations reveal a belt of dust emission that peaks at a radius of 40 AU. This outer size scale agrees with predictions for a reservoir of planetesimals (a “birth ring”) based on the shape of the midplane scattered light profile. We do not find any significant asymmetries in the structure or the centroid position of the emission belt. The ALMA observations with a resolution of 0.6 arcsec (6 AU) also reveal a previously unknown central emission peak, ~6 times brighter than the stellar photosphere at these wavelengths. This central component remains unresolved and could be explained by stellar activity or an inner planetesimal belt located ≲3 AU from the star and containing roughly 1% the mass of the outer belt. Future observations with higher angular resolution will be able to distinguish between these possibilities.


2013 ◽  
Vol 8 (S299) ◽  
pp. 99-103
Author(s):  
K.R. Stapelfeldt ◽  
G. Duchêne ◽  
M. Perrin ◽  
S. Wolff ◽  
J.E. Krist ◽  
...  

AbstractEdge-on, optically thick circumstellar disks have been previously imaged at subarcsecond resolution around about a dozen nearby young stellar objects. In these systems the central star is occulted from direct view, bright star image artifacts are absent, and the disk reflected light is clearly seen. Comparison of Hubble Space Telescope (HST) edge-on disk images with scattered light models has allowed key disk structural parameters and dust grain properties to be determined. Edge-on disks have been systematically undercounted to date: while 10% of young stars should statistically be occulted by their disk, the observed frequency is much less. Thus there is a significant potential for discovering and imaging new examples. Spitzer Space Telescope legacy science programs have provided the first good spectral energy distribution (SED) measurements for the previously known edge-on disks. These can be used as templates to identify new candidates in far-infrared survey datasets.We report on the results of our HST program to image twenty-one edge-on disk candidates mostly selected from their SEDs. Eleven are well-resolved with radii ranging from 30-400 AU, nine for the first time and six showing highly collimated jets. Outstanding individual sources include a large and symmetric new template object, a highly flattened disk not accreting onto its central star, and an asymmetric disk with a misaligned jet which likely traces tidal perturbations in a binary system. Follow-up work to obtain ancillary data and perform scattered light modeling of the most symmetric disks is now being pursued. The results of this program will guide a new round of searches for these rare but important snapshots of protoplanetary disk evolution.


2015 ◽  
Vol 815 (1) ◽  
pp. L14 ◽  
Author(s):  
Li-Wei Hung ◽  
Gaspard Duchêne ◽  
Pauline Arriaga ◽  
Michael P. Fitzgerald ◽  
Jérôme Maire ◽  
...  

2001 ◽  
Vol 561 (1) ◽  
pp. 299-307 ◽  
Author(s):  
Kenneth Wood ◽  
David Smith ◽  
Barbara Whitney ◽  
Keivan Stassun ◽  
Scott J. Kenyon ◽  
...  

2017 ◽  
Vol 834 (2) ◽  
pp. L12 ◽  
Author(s):  
Élodie Choquet ◽  
Julien Milli ◽  
Zahed Wahhaj ◽  
Rémi Soummer ◽  
Aki Roberge ◽  
...  
Keyword(s):  

2017 ◽  
Vol 843 (1) ◽  
pp. L12 ◽  
Author(s):  
Elisabeth Matthews ◽  
Sasha Hinkley ◽  
Arthur Vigan ◽  
Grant Kennedy ◽  
Aaron Rizzuto ◽  
...  

2013 ◽  
Vol 549 ◽  
pp. A112 ◽  
Author(s):  
G. D. Mulders ◽  
M. Min ◽  
C. Dominik ◽  
J. H. Debes ◽  
G. Schneider

Sign in / Sign up

Export Citation Format

Share Document