disk size
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 19)

H-INDEX

16
(FIVE YEARS 5)

2021 ◽  
Vol 922 (2) ◽  
pp. 235
Author(s):  
Zhizheng Pan ◽  
Jing Wang ◽  
Xianzhong Zheng ◽  
Xu Kong

Abstract We study the role of atomic hydrogen (H i) in regulating the size growth of local galaxies. The size of a galaxy, D r,25, is characterized by the diameter at which the r-band surface brightness reaches μ r = 25.0 mag arcsec − 2 . We find that the positions of galaxies in the size (D r,25)−stellar-mass (M *) plane strongly depend on their H i-to-stellar-mass ratio (M H i /M *). In the H i−rich regime, galaxies that are richer in H i tend to have larger sizes. Such a trend is not seen in the H i–poor regime, suggesting that size growth is barely affected by the H i content when it has decreased to a sufficiently low level. An investigation of the relations between size, M H I/M *, and star formation rate (SFR) suggests that size is more intrinsically linked with M H I/M *, rather than SFR. We further examine the H i-to-stellar-disk size ratio (D H I/D r,25) of galaxies and find that at log(M H I/M *) > −0.7, D H I/D r,25 is weakly correlated with M *. These findings support a picture in which the H i−rich galaxies live in an inside-out disk-growing phase regulated by gas accretion and star formation. The angular momentum of the accreted materials is probably the key parameter in shaping the size of a H i−rich galaxy.


2021 ◽  
Vol 922 (1) ◽  
pp. 36
Author(s):  
Yueh-Ning Lee ◽  
Pierre Marchand ◽  
Yu-Hsuan Liu ◽  
Patrick Hennebelle

Abstract The role of nonideal magnetohydrodynamics has been proven critical during the formation of protoplanetary disks, particularly in regulating their sizes. We provide a simple model to predict the disk size under the interplay among ambipolar diffusion, the Hall effect, and ohmic dissipation. The model predicts a small disk size of around 20 au that depends only sublinearly on disk parameters, for a wide range of initial conditions of subsolar mass and moderate magnetization. It is able to explain phenomena manifested in existing numerical simulations, including the bimodal disk behavior under parallel and antiparallel alignment between the rotation and magnetic field. In the parallel configuration, the disk size decreases and eventually disappears. In the antiparallel configuration, the disk has an outer partition (or pseudodisk), which is flat, shrinking, and short-lived, as well as an inner partition, which grows slowly with mass and is long-lived. Even with significant initial magnetization, the vertical field in the disk can only dominate at the early stage when the mass is low, and the toroidal field eventually dominates in all disks.


2021 ◽  
Vol 653 ◽  
pp. L5
Author(s):  
N. T. Phuong ◽  
A. Dutrey ◽  
E. Chapillon ◽  
S. Guilloteau ◽  
J. Bary ◽  
...  

Context. Molecular line surveys are among the main tools to probe the structure and physical conditions in protoplanetary disks (PPDs), the birthplace of planets. The large radial and vertical temperature as well as density gradients in these PPDs lead to a complex chemical composition, making chemistry an important step to understand the variety of planetary systems. Aims. We aimed to study the chemical content of the protoplanetary disk surrounding GG Tau A, a well-known triple T Tauri system. Methods. We used NOEMA with the new correlator PolyFix to observe rotational lines at ∼2.6 to 4 mm from a few dozen molecules. We analysed the data with a radiative transfer code to derive molecular densities and the abundance relative to 13CO, which we compare to those of the TMC1 cloud and LkCa 15 disk. Results. We report the first detection of CCS in PPDs. We also marginally detect OCS and find 16 other molecules in the GG Tauri outer disk. Ten of them had been found previously, while seven others (13CN, N2H+, HNC, DNC, HC3N, CCS, and C34S) are new detections in this disk. Conclusions. The analysis confirms that sulphur chemistry is not yet properly understood. The D/H ratio, derived from DCO+/HCO+, DCN/HCN, and DNC/HNC ratios, points towards a low temperature chemistry. The detection of the rare species CCS confirms that GG Tau is a good laboratory to study the protoplanetary disk chemistry, thanks to its large disk size and mass.


Author(s):  
C. Fian ◽  
E. Mediavilla ◽  
J. Jiménez-Vicente ◽  
V. Motta ◽  
J. A. Muñoz ◽  
...  
Keyword(s):  

2021 ◽  
Vol 647 ◽  
pp. A173
Author(s):  
K. I. I. Koljonen ◽  
T. Hovatta

Context. GRS 1915+105 is a transient black hole X-ray binary consistently emitting 10–100% of the Eddington luminosity in the X-ray band over the last three decades until mid-2018 when the source luminosity suddenly decreased by an order of magnitude. This phase was followed by a change to a state with even lower average X-ray fluxes never seen before during the outburst but presenting renewed flaring activity at different wavelengths, albeit with mean fluxes still in decline. Aims. GRS 1915+105 has the longest orbital period known among low-mass X-ray binaries, the largest accretion disk size, and therefore the largest mass supply for accretion. The high inclination of the disk allows the study of geometrical effects of the accretion flow such as changes in the height-to-radius ratio or the effect of accretion disk winds on the intrinsic emission that is expected during the outburst decay. In addition, the transient jet is expected to change to a compact, self-absorbed, steady jet. Methods. We conducted two full polarization Atacama Large Millimeter Array observations to study the jet properties during the outburst decay by analyzing the spectral, polarization, and intra-epoch variability for both observation epochs. In addition, we analyzed almost daily Neutron Star Interior Composition Explorer pointing observations, modeling X-ray power spectral densities, spectral energy distributions, and light curves with a physically motivated model to follow the changing accretion disk properties throughout the outburst decay and relating them to the jet emission. Results. We show that the X-ray and millimeter (mm) spectral, timing, and polarization properties are consistent with those of a typical decaying X-ray binary outburst and that GRS 1915+105 has descended into the low-luminosity hard X-ray state. The jet emission in the mm is consistent with a compact, steady jet with ∼1% linear polarization, and the magnetic field is likely aligned with the jet position angle. Relating the mm emission to the X-ray emission reveals that the source has changed from a higher radio/X-ray correlation index to a lower one; Lradio ∝ LX0.6.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Vipin Kumar Sharma ◽  
Bal Krishna Yadav ◽  
Murli Manohar Verma

AbstractWe explore a new realisation of the galactic scale dynamics via gravitational lensing phenomenon in power-law f(R) gravity theory of the type $$f(R)\propto R^{1+\delta }$$ f ( R ) ∝ R 1 + δ with $$\delta<<1$$ δ < < 1 for interpreting the clustered dark matter effects. We utilize the single effective point like potential (Newtonian potential + f(R) background potential) obtained under the weak field limit to study the combined observations of galaxy rotation curve beyond the optical disk size and their lensing profile in f(R) frame work. We calculate the magnitude of light deflection angle with the characteristic length scale (because of Noether symmetry in f(R) theories) appearing in the effective f(R) rotational velocity profile of a typical galaxy with the model parameter $$\delta \approx O(10^{-6})$$ δ ≈ O ( 10 - 6 ) constrained in previous work. For instance, we work with the two nearby controversial galaxies NGC 5533 and NGC 4138 and explore their galactic features by analysing the lensing angle profiles in f(R) background. We also contrast the magnitudes of f(R) lensing angle profiles and the relevant parameters of such galaxies with the generalised pseudo-isothermal galaxy halo model and find consistency.


2021 ◽  
Vol 645 ◽  
pp. A78
Author(s):  
L. A. Berdina ◽  
V. S. Tsvetkova ◽  
V. M. Shulga

The interband time lags between the flux variations of the Q2237+0305 quasar have been determined from light curves in the Johnson-Cousins V, R, and I spectral bands. The values of the time lags for filter pairs R − V, I − R, and I − V are significantly higher than those predicted by the standard accretion disk model by Shakura and Sunyaev. To explain the discrepancy, the idea of a supercritical accretion regime in quasars considered in 1973 by Shakura and Sunyaev is applied. This regime has been shown by them to cause an extended scattering envelope around the accretion disk. The envelope efficiently scatters and re-emits the radiation from the accretion disk and thus increases the apparent disk size. We made use of analytical expressions for the envelope radius and temperature derived by Shakura and Sunyaev in their analysis of super-Eddington accretion and show that our results are consistent with the existence of such an envelope. The corresponding parameters of the accretion regime were calculated. They provide the radii of the envelope in the V, R, and I spectral bands consistent with the inter-band time lags determined in our work.


2020 ◽  
Vol 640 ◽  
pp. A61 ◽  
Author(s):  
Christian T. Lenz ◽  
Hubert Klahr ◽  
Tilman Birnstiel ◽  
Katherine Kretke ◽  
Sebastian Stammler

Context. When we wish to understand planetesimal formation, the only data set we have is our own Solar System. The Solar System is particularly interesting because so far, it is the only planetary system we know of that developed life. Understanding the conditions under which the solar nebula evolved is crucial in order to understand the different processes in the disk and the subsequent dynamical interaction between (proto-)planets after the gas disk has dissolved. Aims. Protoplanetary disks provide a plethora of different parameters to explore. The question is whether this parameter space can be constrained, allowing simulations to reproduce the Solar System. Methods. Models and observations of planet formation provide constraints on the initial planetesimal mass in certain regions of the solar nebula. By making use of pebble flux-regulated planetesimal formation, we performed a parameter study with nine different disk parameters such as the initial disk mass, the initial disk size, the initial dust-to-gas ratio, the turbulence level, and others. Results. We find that the distribution of mass in planetesimals in the disk depends on the timescales of planetesimal formation and pebble drift. Multiple disk parameters can affect the pebble properties and thus planetesimal formation. However, it is still possible to draw some conclusions on potential parameter ranges. Conclusions. Pebble flux-regulated planetesimal formation appears to be very robust, allowing simulations with a wide range of parameters to meet the initial planetesimal constraints for the solar nebula. This means that it does not require much fine-tuning.


2020 ◽  
Vol 895 (2) ◽  
pp. 125 ◽  
Author(s):  
Matthew A. Cornachione ◽  
Christopher W. Morgan ◽  
Martin Millon ◽  
Misty C. Bentz ◽  
Frederic Courbin ◽  
...  

2020 ◽  
Vol 633 ◽  
pp. A82 ◽  
Author(s):  
A. Garufi ◽  
H. Avenhaus ◽  
S. Pérez ◽  
S. P. Quanz ◽  
R. G. van Holstein ◽  
...  

Context. Near-IR polarimetric images of protoplanetary disks enable us to characterize substructures that might be due to the interaction with (forming) planets. The available census is strongly biased toward massive disks around old stars, however. Aims. The DARTTS program aims at alleviating this bias by imaging a large number of T Tauri stars with diverse properties. Methods. DARTTS-S employs VLT/SPHERE to image the polarized scattered light from disks. In parallel, DARTTS-A provides ALMA images of the same targets for a comparison of different dust components. In this work, we present new SPHERE images of 21 circumstellar disks, which is the largest sample released to date. We also recalculated some relevant stellar and disk properties following Gaia DR2. Results. The targets of this work are significantly younger than those published thus far with polarimetric near-IR (NIR) imaging. Scattered light is unambiguously resolved in 11 targets, and some polarized unresolved signal is detected in 3 additional sources. Some disk substructures are detected. However, the paucity of spirals and shadows from this sample reinforces the trend according to which these NIR features are associated with Herbig stars, either because they are older or more massive. Furthermore, disk rings that are apparent in ALMA observations of some targets do not appear to have corresponding detections with SPHERE. Inner cavities larger than ~15 au are also absent from our images, even though they are expected from the spectral energy distribution. On the other hand, 3 objects show extended filaments at larger scale that are indicative of strong interaction with the surrounding medium. All but one of the undetected disks are best explained by their limited size (≲20 au), and the high occurrence of stellar companions in these sources suggests an important role in limiting the disk size. One undetected disk is massive and very large at millimeter wavelengths, implying that it is self-shadowed in the NIR. Conclusions. This work paves the way toward a more complete and less biased sample of scattered-light observations, which is required to interpret how disk features evolve throughout the disk lifetime.


Sign in / Sign up

Export Citation Format

Share Document