scholarly journals Discovery of four super-soft X-ray sources in XMM-Newton observations of the Large Magellanic Cloud.

Author(s):  
C. Maitra ◽  
F. Haberl
2012 ◽  
Vol 428 (1) ◽  
pp. 50-57 ◽  
Author(s):  
S. A. Grebenev ◽  
A. A. Lutovinov ◽  
S. S. Tsygankov ◽  
I. A. Mereminskiy

1981 ◽  
pp. 141-141
Author(s):  
David J. Helfand ◽  
Knox S. Long

2019 ◽  
Vol 627 ◽  
pp. A151 ◽  
Author(s):  
T. Shenar ◽  
D. P. Sablowski ◽  
R. Hainich ◽  
H. Todt ◽  
A. F. J. Moffat ◽  
...  

Context. Massive Wolf–Rayet (WR) stars dominate the radiative and mechanical energy budget of galaxies and probe a critical phase in the evolution of massive stars prior to core collapse. It is not known whether core He-burning WR stars (classical WR; cWR) form predominantly through wind stripping (w-WR) or binary stripping (b-WR). Whereas spectroscopy of WR binaries has so-far largely been avoided because of its complexity, our study focuses on the 44 WR binaries and binary candidates of the Large Magellanic Cloud (LMC; metallicity Z ≈ 0.5 Z⊙), which were identified on the basis of radial velocity variations, composite spectra, or high X-ray luminosities. Aims. Relying on a diverse spectroscopic database, we aim to derive the physical and orbital parameters of our targets, confronting evolution models of evolved massive stars at subsolar metallicity and constraining the impact of binary interaction in forming these stars. Methods. Spectroscopy was performed using the Potsdam Wolf–Rayet (PoWR) code and cross-correlation techniques. Disentanglement was performed using the code Spectangular or the shift-and-add algorithm. Evolutionary status was interpreted using the Binary Population and Spectral Synthesis (BPASS) code, exploring binary interaction and chemically homogeneous evolution. Results. Among our sample, 28/44 objects show composite spectra and are analyzed as such. An additional five targets show periodically moving WR primaries but no detected companions (SB1); two (BAT99 99 and 112) are potential WR + compact-object candidates owing to their high X-ray luminosities. We cannot confirm the binary nature of the remaining 11 candidates. About two-thirds of the WN components in binaries are identified as cWR, and one-third as hydrogen-burning WR stars. We establish metallicity-dependent mass-loss recipes, which broadly agree with those recently derived for single WN stars, and in which so-called WN3/O3 stars are clear outliers. We estimate that 45  ±  30% of the cWR stars in our sample have interacted with a companion via mass transfer. However, only ≈12  ±  7% of the cWR stars in our sample naively appear to have formed purely owing to stripping via a companion (12% b-WR). Assuming that apparently single WR stars truly formed as single stars, this comprises ≈4% of the whole LMC WN population, which is about ten times less than expected. No obvious differences in the properties of single and binary WN stars, whose luminosities extend down to log L ≈ 5.2 [L⊙], are apparent. With the exception of a few systems (BAT99 19, 49, and 103), the equatorial rotational velocities of the OB-type companions are moderate (veq ≲ 250 km s−1) and challenge standard formalisms of angular-momentum accretion. For most objects, chemically homogeneous evolution can be rejected for the secondary, but not for the WR progenitor. Conclusions. No obvious dichotomy in the locations of apparently single and binary WN stars on the Hertzsprung-Russell diagram is apparent. According to commonly used stellar evolution models (BPASS, Geneva), most apparently single WN stars could not have formed as single stars, implying that they were stripped by an undetected companion. Otherwise, it must follow that pre-WR mass-loss/mixing (e.g., during the red supergiant phase) are strongly underestimated in standard stellar evolution models.


1980 ◽  
Vol 238 ◽  
pp. 93 ◽  
Author(s):  
J. D. McKee ◽  
G. Fritz ◽  
R. G. Cruddace ◽  
S. Shulman ◽  
H. Friedman

1984 ◽  
Vol 287 ◽  
pp. L23 ◽  
Author(s):  
G. A. Chanan ◽  
D. J. Helfand ◽  
S. P. Reynolds

2020 ◽  
Vol 499 (3) ◽  
pp. 4213-4222
Author(s):  
I Ramírez-Ballinas ◽  
J Reyes-Iturbide ◽  
P Ambrocio-Cruz ◽  
R Gabbasov ◽  
M Rosado

ABSTRACT We present observations in X-ray and optical emission of the supernova remnant (SNR) 0520–69.4 in the Large Magellanic Cloud. Using XMM–Newton observatory data, we produced images of the diffuse X-ray emission and spectra to obtain the X-ray parameters, such as luminosity and temperature, of hot plasma in the SNR. Diffuse X-ray emission with filled-centre morphology goes beyond the Hα region, suggesting that the hot gas escapes through the pores of the Hα shell. We fitted a model that has a plasma temperature of 1.1 × 107 K for an X-ray thermal luminosity of 3.3 × 1035 erg s−1. However, from Hα and [O iii] Fabry–Perot observations obtained with the Marseille Hα Survey of the Magellanic Clouds and the Milky Way at La Silla, European Southern Observatory, we are able to obtain physical parameters such as the velocity of the shock induced in the cloudlets emitting at optical wavelengths and the electron density of this gas. With the parameters described above, we test the model proposed by White & Long (1991, ApJ, 373, 543) for explaining the mixed-morphology observed.


1991 ◽  
Vol 148 ◽  
pp. 99-100
Author(s):  
You-Hua Chu ◽  
Mordecai-Mark Mac Low

We find diffuse X-ray emission not associated with known SNRs in seven LMC HII complexes. All, except 30 Dor, have simple ring morphologies, indicating shell structures. Assuming these are superbubbles, we find the X-ray luminosity expected from their hot interiors to be an order of magnitude lower than the observed value. SNRs close to the center of a superbubble add very little emission, but we calculate that off-center SNRs hitting the ionized shell could explain the observed emission.


2019 ◽  
Vol 484 (1) ◽  
pp. 1317-1324 ◽  
Author(s):  
J Kuuttila ◽  
M Gilfanov ◽  
I R Seitenzahl ◽  
T E Woods ◽  
F P A Vogt

1988 ◽  
Vol 101 ◽  
pp. 383-386
Author(s):  
James R. Graham ◽  
A. Evans ◽  
J.S. Albinson ◽  
M.F. Bode ◽  
W.P.S. Meikle

AbstractIRAS additional observations show that luminous (104−105 L⊙) far-IR sources are associated with the Large Magellanic Cloud (LMC) supernova remnants N63A, N49, N49B, and N186D. Comparison of the IRAS and X-ray data shows that a substantial fraction of the IR emission from three of the SNRs can be accounted for by collisionally heated dust. The ratio of dust-grain cooling to total atomic cooling is ~10 in X-ray emitting gas (T~106 K). We show why dust cooling does not dominate, but probably speeds SNR evolution in an inhomogeneous interstellar medium.


Sign in / Sign up

Export Citation Format

Share Document