Probing the low-mass end of the companion mass function for O-type stars

Author(s):  
M. Reggiani ◽  
A. Rainot ◽  
H. Sana ◽  
L. A. Almeida ◽  
S. Caballero-Nieves ◽  
...  
Keyword(s):  
1998 ◽  
Vol 508 (1) ◽  
pp. 347-369 ◽  
Author(s):  
K. L. Luhman ◽  
G. H. Rieke ◽  
C. J. Lada ◽  
E. A. Lada

1998 ◽  
Vol 11 (1) ◽  
pp. 423-424
Author(s):  
Motohide Tamura ◽  
Yoichi Itoh ◽  
Yumiko Oasa ◽  
Alan Tokunaga ◽  
Koji Sugitani

Abstract In order to tackle the problems of low-mass end of the initial mass function (IMF) in star-forming regions and the formation mechanisms of brown dwarfs, we have conducted deep infrared surveys of nearby molecular clouds. We have found a significant population of very low-luminosity sources with IR excesses in the Taurus cloud and the Chamaeleon cloud core regions whose extinction corrected J magnitudes are 3 to 8 mag fainter than those of typical T Tauri stars in the same cloud. Some of them are associated with even fainter companions. Follow-up IR spectroscopy has confirmed for the selected sources that their photospheric temperature is around 2000 to 3000 K. Thus, these very low-luminosity young stellar sources are most likely very low-mass T Tauri stars, and some of them might even be young brown dwarfs.


2020 ◽  
Vol 500 (2) ◽  
pp. 1697-1707
Author(s):  
Paul C Clark ◽  
Anthony P Whitworth

ABSTRACT We propose a new model for the evolution of a star cluster’s system mass function (SMF). The model involves both turbulent fragmentation and competitive accretion. Turbulent fragmentation creates low-mass seed proto-systems (i.e. single and multiple protostars). Some of these low-mass seed proto-systems then grow by competitive accretion to produce the high-mass power-law tail of the SMF. Turbulent fragmentation is relatively inefficient, in the sense that the creation of low-mass seed proto-systems only consumes a fraction, ${\sim }23{{\ \rm per\ cent}}$ (at most ${\sim }50{{\ \rm per\ cent}}$), of the mass available for star formation. The remaining mass is consumed by competitive accretion. Provided the accretion rate on to a proto-system is approximately proportional to its mass (dm/dt ∝ m), the SMF develops a power-law tail at high masses with the Salpeter slope (∼−2.3). If the rate of supply of mass accelerates, the rate of proto-system formation also accelerates, as appears to be observed in many clusters. However, even if the rate of supply of mass decreases, or ceases and then resumes, the SMF evolves homologously, retaining the same overall shape, and the high-mass power-law tail simply extends to ever higher masses until the supply of gas runs out completely. The Chabrier SMF can be reproduced very accurately if the seed proto-systems have an approximately lognormal mass distribution with median mass ${\sim } 0.11 \, {\rm M}_{\odot }$ and logarithmic standard deviation $\sigma _{\log _{10}({M/M}_\odot)}\sim 0.47$).


2020 ◽  
Vol 501 (2) ◽  
pp. 1568-1590
Author(s):  
Lukas J Furtak ◽  
Hakim Atek ◽  
Matthew D Lehnert ◽  
Jacopo Chevallard ◽  
Stéphane Charlot

ABSTRACT We present new measurements of the very low mass end of the galaxy stellar mass function (GSMF) at z ∼ 6−7 computed from a rest-frame ultraviolet selected sample of dropout galaxies. These galaxies lie behind the six Hubble Frontier Field clusters and are all gravitationally magnified. Using deep Spitzer/IRAC and Hubble Space Telescope imaging, we derive stellar masses by fitting galaxy spectral energy distributions and explore the impact of different model assumptions and parameter degeneracies on the resulting GSMF. Our sample probes stellar masses down to $M_{\star }\gt 10^{6}\, \text{M}_{\odot}$ and we find the z ∼ 6−7 GSMF to be best parametrized by a modified Schechter function that allows for a turnover at very low masses. Using a Monte Carlo Markov chain analysis of the GSMF, including accurate treatment of lensing uncertainties, we obtain a relatively steep low-mass end slope $\alpha \simeq -1.96_{-0.08}^{+0.09}$ and a turnover at $\log (M_T/\text{M}_{\odot})\simeq 7.10_{-0.56}^{+0.17}$ with a curvature of $\beta \simeq 1.00_{-0.73}^{+0.87}$ for our minimum assumption model with constant star formation history (SFH) and low dust attenuation, AV ≤ 0.2. We find that the z ∼ 6−7 GSMF, in particular its very low mass end, is significantly affected by the assumed functional form of the star formation history and the degeneracy between stellar mass and dust attenuation. For example, the low-mass end slope ranges from $\alpha \simeq -1.82_{-0.07}^{+0.08}$ for an exponentially rising SFH to $\alpha \simeq -2.34_{-0.10}^{+0.11}$ when allowing AV of up to 3.25. Future observations at longer wavelengths and higher angular resolution with the James Webb Space Telescope are required to break these degeneracies and to robustly constrain the stellar mass of galaxies on the extreme low-mass end of the GSMF.


1991 ◽  
Vol 147 ◽  
pp. 407-408
Author(s):  
R. C. Fleck

The observed flattening of the initial stellar mass function at low mass can be accounted for in terms of the different interstellar cloud size-mass scaling and different ambipolar diffusion time scaling for small, thermally-supported clouds and larger clouds supported primarily by turbulent pressure.


2012 ◽  
Vol 753 (2) ◽  
pp. 156 ◽  
Author(s):  
J. Davy Kirkpatrick ◽  
Christopher R. Gelino ◽  
Michael C. Cushing ◽  
Gregory N. Mace ◽  
Roger L. Griffith ◽  
...  

2006 ◽  
Vol 460 (1) ◽  
pp. 133-144 ◽  
Author(s):  
F. Damiani ◽  
G. Micela ◽  
S. Sciortino ◽  
N. Huélamo ◽  
A. Moitinho ◽  
...  

2018 ◽  
Vol 614 ◽  
pp. A43 ◽  
Author(s):  
Sami Dib ◽  
Shantanu Basu

We investigate the dependence of a single-generation galactic mass function (SGMF) on variations in the initial stellar mass functions (IMF) of stellar clusters. We show that cluster-to-cluster variations of the IMF lead to a multi-component SGMF where each component in a given mass range can be described by a distinct power-law function. We also show that a dispersion of ≈0.3 M⊙ in the characteristic mass of the IMF, as observed for young Galactic clusters, leads to a low-mass slope of the SGMF that matches the observed Galactic stellar mass function even when the IMFs in the low-mass end of individual clusters are much steeper.


2020 ◽  
Vol 642 ◽  
pp. A175
Author(s):  
Z. Butcher ◽  
W. van Driel ◽  
S. Schneider

We present a modified optical luminosity–H I mass bivariate luminosity function based on H I line observations from the Nançay Interstellar Baryons Legacy Extragalactic Survey (NIBLES), including data from our new, four times more sensitive follow-up H I line observations obtained with the Arecibo radio telescope. The follow-up observations were designed to probe the underlying H I mass distribution of the NIBLES galaxies that were undetected or marginally detected in H I at the Nançay Radio Telescope. Our total follow-up sample consists of 234 galaxies, and it spans the entire luminosity and color range of the parent NIBLES sample of 2600 nearby (900 <  cz <  12 000 km s−1) SDSS galaxies. We incorporated the follow-up data into the bivariate analysis by scaling the NIBLES undetected fraction by an Arecibo-only distribution. We find the resulting increase in low H I mass-to-light ratio densities to be about 10% for the bins −1.0 ≤ log(MHI/M⊙/Lr/L⊙) ≤ −0.5, which produces an increased H I mass function (HIMF) low mass slope of α = −1.14 ± 0.07, being slightly shallower than the values of −1.35 ± 0.05 obtained by recent blind H I surveys. Applying the same correction to the optically corrected bivariate luminosity function from our previous paper produces a larger density increase of about 0.5 to 1 dex in the lowest H I mass-to-light ratio bins for a given luminosity while having a minimal effect on the resulting HIMF low mass slope, which still agrees with blind survey HIMFs. This indicates that while low H I-mass-to-light ratio galaxies do not contribute much to the one-dimensional HIMF, their inclusion has a significant impact on the densities in the two-dimensional distribution.


Sign in / Sign up

Export Citation Format

Share Document