mass scaling
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 72)

H-INDEX

29
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Huaimin Chen ◽  
Cheng-Jun Xia ◽  
Guang-Xiong Peng

Abstract The properties of strange quark matter and the structures of (proto-)strange stars are studied within the framework of a baryon density-dependent quark mass model, where a new quark mass scaling and self-consistent thermodynamic treatment are adopted. Our results show that the perturbative interaction has a strong impact on the properties of strange quark matter. It is found that the energy per baryon increases with temperature, while the free energy decreases and eventually becomes negative. At fixed temperatures, the pressure at the minimum free energy per baryon is zero, suggesting that the thermodynamic self-consistency is preserved. Additionally, the sound velocity v in quark matter approaches to the extreme relativistic limit (c=p3) as the density increases. By increasing the strengths of confinement parameter D and perturbation parameter C, the tendency for v to approach the extreme relativistic limit at high density is slightly weakened. For (proto-)strange stars, in contrast to the quark mass scalings adopted in previous publications, the new quark mass scaling can accommodate massive proto-strange stars with their maximum mass surpassing twice the solar mass by considering the isentropic stages along the star evolution line, where the entropy per baryon of the star matter was set to be 0.5 and 1 with the lepton fraction Yl=0.4.


Geosciences ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Timo Saksala

This paper deals with numerical prediction of temperature (weakening) effects on the tensile strength of granitic rock. A 3D numerical approach based on the embedded discontinuity finite elements is developed for this purpose. The governing thermo-mechanical initial/boundary value problem is solved with an explicit (in time) staggered method while using extreme mass scaling to increase the critical time step. Rock fracture is represented by the embedded discontinuity concept implemented here with the linear (4-node) tetrahedral elements. The rock is modelled as a linear elastic (up to fracture by the Rankine criterion) heterogeneous material consisting of Quartz, Feldspar and Biotite minerals. Due to its strong and anomalous temperature dependence upon approaching the α-β transition at the Curie point (~573 °C), only Quartz in the numerical rock depends on temperature in the present approach. In the numerical testing, the sample is first volumetrically heated to a target temperature. Then, the uniaxial tension test is performed on the cooled down sample. The simulations demonstrate the validity of the proposed approach as the experimental deterioration, by thermally induced cracking, of the rock tensile strength is predicted with a good accuracy.


Author(s):  
M. Smit ◽  
A. Dvornik ◽  
M. Radovich ◽  
K. Kuijken ◽  
M. Maturi ◽  
...  

2021 ◽  
Vol 921 (1) ◽  
pp. 36
Author(s):  
Vardha N. Bennert ◽  
Tommaso Treu ◽  
Xuheng Ding ◽  
Isak Stomberg ◽  
Simon Birrer ◽  
...  

Author(s):  
A Georgakakis ◽  
I Papadakis ◽  
M Paolillo

Abstract An empirical model is presented that links, for the first time, the demographics of AGN to their ensemble X-ray variability properties. Observations on the incidence of AGN in galaxies are combined with (i) models of the Power Spectrum Density (PSD) of the flux variations of AGN and (ii) parameterisations of the black hole mass versus stellar-mass scaling relation, to predict the mean excess variance of active black hole populations in cosmological volumes. We show that the comparison of the model with observational measurements of the ensemble excess variance as a function of X-ray luminosity provides a handle on both the PSD models and the black hole mass versus stellar mass relation. We find strong evidence against a PSD model that is described by a broken power-law and a constant overall normalization. Instead our analysis indicates that the amplitude of the PSD depends on the physical properties of the accretion events, such as the Eddington ratio and/or the black hole mass. We also find that current observational measurements of the ensemble excess variance are consistent with the black hole mass versus stellar mass relation of local spheroids based on dynamically determined black hole masses. We also discuss future prospects of the proposed approach to jointly constrain the PSD of AGN and the black hole mass versus stellar mass relation as a function of redshift.


Author(s):  
Debtanay Das ◽  
Swarup Bag ◽  
Sukhomay Pal ◽  
M. Ruhul Amin

Abstract Friction stir welding (FSW) is widely recognized green manufacturing process capable of producing good quality welded joints at temperature lower than the melting point. However, most of the works is focused on to the establishment of the process parameters for a defect-free joint. There is a lack to understand the formation of defects from physical basis and visualization of the same, which is otherwise difficult to predict by means of simple experiments. The conventional models do not predict chip formation and surface morphology by accounting the material loss during the process. Hence, a 3D finite element based thermo-mechanical model is developed following Coupled Eulerian-Lagrangian (CEL) approach to understand surface morphology by triggering material flow associated with tool-material interaction. In the present quasi-static analysis, the mass scaling factor is explored to make the model computationally feasible by varying the FSW parameter of plunge depth. The simulated results are validated with experimentally measured temperature and surface morphology. In CEL approach, the material flow out of the workpiece enables the visualization of the chip formation, whereas small deformation predict the surface quality of the joint.


Author(s):  
A Viitanen ◽  
V Allevato ◽  
A Finoguenov ◽  
F Shankar ◽  
C Marsden

Abstract The co-evolution between central supermassive black holes (BH), their host galaxies, and dark matter haloes is still a matter of intense debate. Present theoretical models suffer from large uncertainties and degeneracies, for example, between the fraction of accreting sources and their characteristic accretion rate. In recent work we showed that Active Galactic Nuclei (AGN) clustering represents a powerful tool to break degeneracies when analysed in terms of mean BH mass, and that AGN bias at fixed stellar mass is largely independent of most of the input parameters, such as the AGN duty cycle and the mean scaling between BH mass and host galaxy stellar mass. In this paper we take advantage of our improved semi-empirical methodology and recent clustering data derived from large AGN samples at z ∼ 1.2, demonstrate that the AGN bias as a function of host galaxy stellar mass is a crucial diagnostic of the BH–galaxy connection, and is highly dependent on the scatter around the BH mass–galaxy mass scaling relation and on the relative fraction of satellite and central active BHs. Current data at z ∼ 1.2 favour relatively high values of AGN in satellites, pointing to a major role of disc instabilities in triggering AGN, unless a high minimum host halo mass is assumed. The data are not decisive on the magnitude/covariance of the BH-galaxy scatter at z ∼ 1.2 and intermediate host masses M⊙ ≲ 1011 M⊙. However, future surveys like Euclid/LSST will be pivotal in shedding light on the BH–galaxy co-evolution.


2021 ◽  
Author(s):  
Simon Gemble ◽  
Sara Vanessa Bernhard ◽  
Nishit Srivastava ◽  
Rene Wardenaar ◽  
Maddalena Nano ◽  
...  

Doubling of the full chromosome content -whole genome duplications (WGDs)- is frequently found in human cancers and is responsible for the rapid evolution of genetically unstable karyotypes. It has previously been established that WGDs fuel chromosome instability due to abnormal mitosis owing to the presence of extra centrosomes and extra chromosomes. Tolerance to ploidy changes has been identified in different model organisms and cell types, revealing long term cellular adaptations that accommodate ploidy increase. Importantly, however, the immediate consequences of WGDs as cells become tetraploid are not known. It also remains unknown whether WGD triggers other events leading to genetic instability (GIN), independently of mitosis. In this study, we induced tetraploidy in diploid genetically stable RPE-1 cells and monitored the first interphase. We found that newly born tetraploids undergo high rates of DNA damage during DNA replication. Using DNA combing and single cell sequencing, we show that replication forks are unstable, perturbing DNA replication dynamics and generating under- and over-replicated regions at the end of S-phase. Mechanistically, we found that these defects result from lack of protein mass scaling up at the G1/S transition, which impairs the fidelity of DNA replication. This work shows that within a single interphase, unscheduled tetraploid cells can accumulate highly abnormal karyotypes. These findings provide an explanation for the GIN landscape that favors tumorigenesis after tetraploidization.


2021 ◽  
Author(s):  
Ryan B. MCWHINNIE ◽  
Jason P. SCKRABULIS ◽  
Thomas R. RAFFEL
Keyword(s):  

2021 ◽  
Author(s):  
Dinesh Thakur ◽  
Zuzana Munzbergova

Rhizomes are important organs allowing many clonal plants to persist and reproduce under stressful climates with longer rhizomes indicating enhanced ability of plants to spread vegetatively. However, we do not know how rhizome construction costs (specific rhizome length (SRZL)) change with increasing length. Here we analysed rhizome length vs mass scaling relationship to address this question. We also analysed plasticity in scaling relationships, its genetic basis, and how scaling relationships are linked to plant fitness. We used data from 275 genotypes of a clonal grass Festuca rubra originating from 11 localities and cultivated under four contrasting climates. Data were analysed using standard major axis regression, mixed effects regression models and structural equation model. We found that rhizome construction costs increase (i.e. lower SRZL) with increasing length. The trait scaling relationships were modulated by cultivation climate and its effects also interacted with climate of origin of the experimental plants. Increasing moisture lead to greater increase in rhizome construction costs with increasing length. Our results also demonstrated that trait scaling relationships are linked to plant fitness. This study suggests that scaling relationship are plastic, but also show genetic differentiation and are linked to plant fitness. Therefore, modulation in scaling relationships could be important strategy of plants to persist under variable environments.


Sign in / Sign up

Export Citation Format

Share Document