stellar sources
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 2)

H-INDEX

26
(FIVE YEARS 0)

2021 ◽  
Vol 922 (2) ◽  
pp. 155
Author(s):  
Mallory Molina ◽  
Amy E. Reines ◽  
Colin J. Latimer ◽  
Vivienne Baldassare ◽  
Sheyda Salehirad

Abstract The massive black hole (BH) population in dwarf galaxies (M BH ≲ 105 M ⊙) can provide strong constraints on the origin of BH seeds. However, traditional optical searches for active galactic nuclei (AGNs) only reliably detect high-accretion, relatively high-mass BHs in dwarf galaxies with low amounts of star formation, leaving a large portion of the overall BH population in dwarf galaxies relatively unexplored. Here, we present a sample of 81 dwarf galaxies (M ⋆ ≤ 3 × 109 M ⊙) with detectable [Fe x]λ6374 coronal line emission indicative of accretion onto massive BHs, only two of which were previously identified as optical AGNs. We analyze optical spectroscopy from the Sloan Digital Sky Survey and find [Fe x]λ6374 luminosities in the range L [Fe x] ≈ 1036–1039 erg s−1, with a median value of 1.6 × 1038 erg s−1. The [Fe x] λ6374 luminosities are generally much too high to be produced by stellar sources, including luminous Type IIn supernovae (SNe). Moreover, based on known SNe rates, we expect at most eight Type IIn SNe in our sample. That said, the [Fe x]λ6374 luminosities are consistent with accretion onto massive BHs from AGNs or tidal disruption events (TDEs). We find additional indicators of BH accretion in some cases using other emission line diagnostics, optical variability, and X-ray and radio emission (or some combination of these). However, many of the galaxies in our sample only have evidence for a massive BH based on their [Fe x]λ6374 luminosities. This work highlights the power of coronal line emission to find BHs in dwarf galaxies missed by other selection techniques and to probe the BH population in bluer, lower-mass dwarf galaxies.



2021 ◽  
Vol 6 (58) ◽  
pp. 2641
Author(s):  
Michael Fitzgerald ◽  
Edward Gomez ◽  
Saeed Salimpour ◽  
Joe Singleton ◽  
Ridlo Wibowo


2020 ◽  
Vol 642 ◽  
pp. A87 ◽  
Author(s):  
M. S. N. Kumar ◽  
P. Palmeirim ◽  
D. Arzoumanian ◽  
S. I. Inutsuka

Context. Star formation takes place in giant molecular clouds, resulting in mass-segregated young stellar clusters composed of Sun-like stars, brown dwarfs, and massive O-type(50–100 M⊙) stars. Aims. We aim to identify candidate hub-filament systems (HFSs) in the Milky Way and examine their role in the formation of the highest mass stars and star clusters. Methods. The Herschel survey HiGAL has catalogued about 105 clumps. Of these, approximately 35 000 targets are detected at the 3σ level in a minimum of four bands. Using the DisPerSE algorithm we detect filamentary skeletons on 10′ × 10′ cut-outs of the SPIRE 250 μm images (18′′ beam width) of the targets. Any filament with a total length of at least 55′′ (3 × 18′′) and at least 18′′ inside the clump was considered to form a junction at the clump. A hub is defined as a junction of three or more filaments. Column density maps were masked by the filament skeletons and averaged for HFS and non-HFS samples to compute the radial profile along the filaments into the clumps. Results. Approximately 3700 (11%) are candidate HFSs, of which about 2150 (60%) are pre-stellar and 1400 (40%) are proto-stellar. The filaments constituting the HFSs have a mean length of ~10–20 pc, a mass of ~5 × 104 M⊙, and line masses (M∕L) of ~2 × 103 M⊙ pc−1. All clumps with L > 104 L⊙ and L > 105 L⊙ at distances within 2 and 5 kpc respectively are located in the hubs of HFSs. The column densities of hubs are found to be enhanced by a factor of approximately two (pre-stellar sources) up to about ten (proto-stellar sources). Conclusions. All high-mass stars preferentially form in the density-enhanced hubs of HFSs. This amplification can drive the observed longitudinal flows along filaments providing further mass accretion. Radiation pressure and feedback can escape into the inter-filamentary voids. We propose a “filaments to clusters” unified paradigm for star formation, with the following salient features: (a) low-intermediate-mass stars form slowly (106 yr) in the filaments and massive stars form quickly (105 yr) in the hub, (b) the initial mass function is the sum of stars continuously created in the HFS with all massive stars formed in the hub, (c) feedback dissipation and mass segregation arise naturally due to HFS properties, and explain the (d) age spreads within bound clusters and the formation of isolated OB associations.



2020 ◽  
Vol 642 ◽  
pp. A136
Author(s):  
P. Benaglia ◽  
C. H. Ishwara-Chandra ◽  
H. Intema ◽  
M. E. Colazo ◽  
M. Gaikwad

Context. Observations at the radio continuum band below the gigahertz band are key when the nature and properties of nonthermal sources are investigated because their radio radiation is strongest at these frequencies. The low radio frequency range is therefore the best to spot possible counterparts to very high-energy (VHE) sources: relativistic particles of the same population are likely to be involved in radio and high-energy radiation processes. Some of these counterparts to VHE sources can be stellar sources. Aims. The Cygnus region in the northern sky is one of the richest in this type of sources that are potential counterparts to VHE sources. We surveyed the central ∼15 sq deg of the Cygnus constellation at the 325 and 610 MHz bands with angular resolutions and sensitivities of 10″ and 6″, and 0.5 and 0.2 mJy beam−1, respectively. Methods. The data were collected during 172 h in 2013–2017, using the Giant Metrewave Radio Telescope with 32 MHz bandwidth, and were calibrated using the SPAM routines. The source extraction was carried out with the PyBDSF tool, followed by verification through visual inspection of every putative catalog candidate source in order to determine its reliability. Results. In this first paper we present the catalog of sources, consisting of 1048 sources at 325 MHz and 2796 sources at 610 MHz. By cross-matching the sources from both frequencies with the objects of the SIMBAD database, we found possible counterparts for 143 of them. Most of the sources from the 325-MHz catalog (993) were detected at the 610 MHz band, and their spectral index α was computed adopting S(ν) ∝ να. The maximum of the spectral index distribution is at α = −1, which is characteristic of nonthermal emitters and might indicate an extragalactic population.



Proceedings ◽  
2020 ◽  
Vol 54 (1) ◽  
pp. 52
Author(s):  
Iker González-Santamaría ◽  
Minia Manteiga ◽  
Carlos Dafonte ◽  
Arturo Manchado ◽  
Ana Ulla

The aim of this work is to search for binary stars associated to planetary nebulae (ionized stellar envelopes in expansion), by mining the astronomical archive of Gaia DR2, that is composed by around 1.7 billion stellar sources. For this task, we selected those objects with coincident astrometric parameters (parallaxes and proper motions) with the corresponding central star, among a sample of 211 planetary nebulae. By this method, we found eight binary systems, and we obtained their components positions, separations, temperatures and luminosities, as well as some of their masses and ages. In addition, we estimated the probability for each companion star of having been detected by chance and we analyzed how the number of false matches increase as the separation distance between both stars gets larger. All these procedures have been carried out making use of data mining techniques.



2020 ◽  
Vol 498 (4) ◽  
pp. 4811-4829
Author(s):  
S Hackstein ◽  
M Brüggen ◽  
F Vazza ◽  
L F S Rodrigues

ABSTRACT Fast radio bursts are transient radio pulses from presumably compact stellar sources of extragalactic origin. With new telescopes detecting multiple events per day, statistical methods are required in order to interpret observations and make inferences regarding astrophysical and cosmological questions. We present a method that uses probability estimates of fast radio burst observables to obtain likelihood estimates for the underlying models. Considering models for all regions along the line of sight, including intervening galaxies, we perform Monte Carlo simulations to estimate the distribution of the dispersion measure (DM), rotation measure (RM), and temporal broadening. Using Bayesian statistics, we compare these predictions to observations of fast radio bursts. By applying Bayes theorem, we obtain lower limits on the redshift of fast radio bursts with extragalactic DM ≳ 400 pc cm−3. We find that intervening galaxies cannot account for all highly scattered fast radio bursts in FRBcat, thus requiring a denser and more turbulent environment than an SGR 1935+2154-like magnetar. We show that a sample of ≳103 unlocalized fast radio bursts with associated extragalactic RM ≥ 1 rad m−2 can improve current upper limits on the strength of intergalactic magnetic fields.



2020 ◽  
Vol 496 (3) ◽  
pp. 3668-3687 ◽  
Author(s):  
I De Looze ◽  
I Lamperti ◽  
A Saintonge ◽  
M Relaño ◽  
M W L Smith ◽  
...  

ABSTRACT Scaling laws of dust, H i gas, and metal mass with stellar mass, specific star formation rate, and metallicity are crucial to our understanding of the build-up of galaxies through their enrichment with metals and dust. In this work, we analyse how the dust and metal content varies with specific gas mass (MH i/M⋆) across a diverse sample of 423 nearby galaxies. The observed trends are interpreted with a set of Dust and Element evolUtion modelS (DEUS) – including stellar dust production, grain growth, and dust destruction – within a Bayesian framework to enable a rigorous search of the multidimensional parameter space. We find that these scaling laws for galaxies with −1.0 ≲ log MH i/M⋆ ≲ 0 can be reproduced using closed-box models with high fractions (37–89 ${{\ \rm per\ cent}}$) of supernova dust surviving a reverse shock, relatively low grain growth efficiencies (ϵ = 30–40), and long dust lifetimes (1–2 Gyr). The models have present-day dust masses with similar contributions from stellar sources (50–80 ${{\ \rm per\ cent}}$) and grain growth (20–50 ${{\ \rm per\ cent}}$). Over the entire lifetime of these galaxies, the contribution from stardust (>90 ${{\ \rm per\ cent}}$) outweighs the fraction of dust grown in the interstellar medium (<10 ${{\ \rm per\ cent}}$). Our results provide an alternative for the chemical evolution models that require extremely low supernova dust production efficiencies and short grain growth time-scales to reproduce local scaling laws, and could help solving the conundrum on whether or not grains can grow efficiently in the interstellar medium.



2019 ◽  
Vol 492 (1) ◽  
pp. 480-487
Author(s):  
M F Rashman ◽  
I A Steele ◽  
S D Bates ◽  
D Copley ◽  
S N Longmore

ABSTRACT We describe the design and commissioning of a simple prototype, low-cost 10 μm imaging instrument. The system is built using commercially available components including an uncooled microbolometer array as a detector. The incorporation of adjustable germanium reimaging optics rescale the image to the appropriate plate scale for the 2 m diameter Liverpool Telescope. From observations of bright Solar system and stellar sources, we demonstrate a plate scale of 0.75 arcsec per pixel and confirm the optical design allows diffraction limited imaging. We record a ∼10 $\, {\rm per\, cent}$ photometric stability due to sky variability. We measure a 3σ sensitivity of 7 × 103 Jy for a single, ∼0.11 s exposure. This corresponds to a sensitivity limit of 3 × 102 Jy for a 60 s total integration. We present an example science case from observations of the 2019 January total lunar eclipse and show that the system can detect and measure the anomalous cooling rate associated with the features Bellot and Langrenus during eclipse.



2019 ◽  
Vol 491 (4) ◽  
pp. 5789-5792
Author(s):  
Geraint F Lewis ◽  
Peter Tuthill

ABSTRACT Gravitational microlensing within the Galaxy offers the prospect of probing the details of distant stellar sources, as well as revealing the distribution of compact (and potentially non-luminous) masses along the line of sight. Recently, it has been suggested that additional constraints on the lensing properties can be determined through the measurement of the time delay between images through the correlation of the bunching of photon arrival times; an application of the Hanbury–Brown Twiss effect. In this paper, we revisit this analysis, examining the impact of decoherence of the radiation from a spatially extended source along the multiple paths to an observer. The result is that, for physically reasonable situations, such decoherence completely erases any correlation that could otherwise be used to measure the gravitational lensing time delay. Indeed, the divergent light paths traverse extremely long effective baselines at the lens plane, corresponding to extremes of angular resolving power well beyond those attainable with any terrestrial technologies; the drawback being that few conceivable celestial objects would be sufficiently compact with high enough surface brightness to yield usable signals.



2019 ◽  
Vol 631 ◽  
pp. A59
Author(s):  
Marcelo Armengot ◽  
Ana I. Gómez de Castro

Context. The all-sky survey run by the Galaxy Evolution Explorer (GALEX AIS) mapped about 85% of the Galaxy at ultraviolet (UV) wavelengths and detected the diffuse UV background produced by the scattering of the radiation from OBA stars by interstellar dust grains. Against this background, diffuse weak structures were detected as well as the UV counterparts to nebulae and molecular clouds. Aims. To make full profit of the survey, unsupervised and semi-supervised procedures need to be implemented. The main objective of this work is to implement and analyze the results of the method developed by us for the blind detection of ISM features in the GALEX AIS. Methods. Most ISM features are detected at very low signal levels (dark filaments, globules) against the already faint UV background. We have defined an index, the UV background fluctuations index (or UBF index), to identify areas of the sky where these fluctuations are detected. The algorithm is applied to the images obtained in the far-UV (1344–1786 Å) band since this is less polluted by stellar sources, facilitating the automated detection. Results. The UBF index is shown to be sensitive to the main star forming regions within the Gould’s Belt, and to some prominent loops like Loop I or the Eridanus and Monogem areas. The catalog with the UBF index values is made available online to the community.



Sign in / Sign up

Export Citation Format

Share Document