scholarly journals A modified Milne-Eddington approximation for a qualitative interpretation of chromospheric spectral lines

Author(s):  
A. J. Dorantes-Monteagudo ◽  
A. L. Siu-Tapia ◽  
C. Quintero Noda ◽  
D. Orozco Suárez
1977 ◽  
Vol 36 ◽  
pp. 191-215
Author(s):  
G.B. Rybicki

Observations of the shapes and intensities of spectral lines provide a bounty of information about the outer layers of the sun. In order to utilize this information, however, one is faced with a seemingly monumental task. The sun’s chromosphere and corona are extremely complex, and the underlying physical phenomena are far from being understood. Velocity fields, magnetic fields, Inhomogeneous structure, hydromagnetic phenomena – these are some of the complications that must be faced. Other uncertainties involve the atomic physics upon which all of the deductions depend.


Author(s):  
Martin Peckerar ◽  
Anastasios Tousimis

Solid state x-ray sensing systems have been used for many years in conjunction with scanning and transmission electron microscopes. Such systems conveniently provide users with elemental area maps and quantitative chemical analyses of samples. Improvements on these tools are currently sought in the following areas: sensitivity at longer and shorter x-ray wavelengths and minimization of noise-broadening of spectral lines. In this paper, we review basic limitations and recent advances in each of these areas. Throughout the review, we emphasize the systems nature of the problem. That is. limitations exist not only in the sensor elements but also in the preamplifier/amplifier chain and in the interfaces between these components.Solid state x-ray sensors usually function by way of incident photons creating electron-hole pairs in semiconductor material. This radiation-produced mobile charge is swept into external circuitry by electric fields in the semiconductor bulk.


1979 ◽  
Vol 40 (C7) ◽  
pp. C7-741-C7-742
Author(s):  
S. Chyrczakowski ◽  
K. Melzacki ◽  
M. Sadowski

Author(s):  
Х. И. Алджубури ◽  
М.-Т. И. Соскида ◽  
Л. Л. Шимон

1926 ◽  
Vol 2 (6) ◽  
pp. 252-253
Author(s):  
Hantaro NAGAOKA ◽  
Tetsugoro FUTAGAMI
Keyword(s):  

1996 ◽  
Vol 176 ◽  
pp. 53-60 ◽  
Author(s):  
J.-F. Donati

In this paper, I will review the capabilities of magnetic imaging (also called Zeeman-Doppler imaging) to reconstruct spot distributions of surface fields from sets of rotationnally modulated Zeeman signatures in circularly polarised spectral lines. I will then outline a new method to measure small amplitude magnetic signals (typically 0.1% for cool active stars) with very high accuracy. Finally, I will present and comment new magnetic images reconstructed from data collected in 1993 December at the Anglo-Australian Telescope (AAT).


Author(s):  
A. E. Stepanov ◽  
A. N. Starostin ◽  
V. C. Roerich ◽  
V. A. Makhrov ◽  
A. Ya. Faenov ◽  
...  
Keyword(s):  

Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 176
Author(s):  
Valery Astapenko ◽  
Andrei Letunov ◽  
Valery Lisitsa

The effect of plasma Coulomb microfied dynamics on spectral line shapes is under consideration. The analytical solution of the problem is unachievable with famous Chandrasekhar–Von-Neumann results up to the present time. The alternative methods are connected with modeling of a real ion Coulomb field dynamics by approximate models. One of the most accurate theories of ions dynamics effect on line shapes in plasmas is the Frequency Fluctuation Model (FFM) tested by the comparison with plasma microfield numerical simulations. The goal of the present paper is to make a detailed comparison of the FFM results with analytical ones for the linear and quadratic Stark effects in different limiting cases. The main problem is connected with perturbation additions laws known to be vector for small particle velocities (static line shapes) and scalar for large velocities (the impact limit). The general solutions for line shapes known in the frame of scalar perturbation additions are used to test the FFM procedure. The difference between “scalar” and “vector” models is demonstrated both for linear and quadratic Stark effects. It is shown that correct transition from static to impact limits for linear Stark-effect needs in account of the dependence of electric field jumping frequency in FFM on the field strengths. However, the constant jumping frequency is quite satisfactory for description of the quadratic Stark-effect. The detailed numerical comparison for spectral line shapes in the frame of both scalar and vector perturbation additions with and without jumping frequency field dependence for the linear and quadratic Stark effects is presented.


Sign in / Sign up

Export Citation Format

Share Document