scholarly journals Accretion disk wind in the AGN broad-line region: Spectroscopically resolved line profile variations in Mrk 110

2003 ◽  
Vol 407 (2) ◽  
pp. 461-472 ◽  
Author(s):  
W. Kollatschny
2006 ◽  
pp. 1-11 ◽  
Author(s):  
L.C. Popovic

In this paper a discussion of kinematics and physics of the Broad Line Region (BLR) is given. The possible physical conditions in the BLR and problems in determination of the physical parameters (electron temperature and density) are considered. Moreover, one analyses the geometry of the BLR and the probability that (at least) a fraction of the radiation in the Broad Emission Lines (BELs) originates from a relativistic accretion disk.


2020 ◽  
Vol 636 ◽  
pp. A92
Author(s):  
A. L. Müller ◽  
G. E. Romero

Context. Active galactic nuclei are supermassive black holes surrounded by an accretion disk, two populations of clouds, bipolar jets, and a dusty torus. The clouds move in Keplerian orbits at high velocities. In particular, the broad-line region (BLR) clouds have velocities ranging from 1000 to 10 000 km s−1. Given the extreme proximity of these clouds to the supermassive black hole, frequent collisions with the accretion disk should occur. Aims. The impact of BLR clouds onto the accretion disk can produce strong shock waves where particles might be accelerated. The goal of this work is to investigate the production of relativistic particles, and the associated non-thermal radiation in these events. In particular, we apply the model we develop to the Seyfert galaxy NGC 1068. Methods. We analyze the efficiency of diffusive shock acceleration in the shock of colliding clouds of the BLR with the accretion disk. We calculate the spectral energy distribution of photons generated by the relativistic particles and estimate the number of simultaneous impacts needed to explain the gamma radiation observed by Fermi in Seyfert galaxies. Results. We find that is possible to understand the measured gamma emission in terms of the interaction of clouds with the disk if the hard X-ray emission of the source is at least obscured between 20% and 40%. The total number of clouds contained in the BLR region might be between 3 × 108 and 6 × 108, which are values in good agreement with the observational evidence. The maximum energy achieved by the protons (∼PeV) in this context allows the production of neutrinos in the observing range of IceCube.


1997 ◽  
Vol 163 ◽  
pp. 738-739 ◽  
Author(s):  
John F. Kartje ◽  
Arieh Königl ◽  
Moshe Elitzur

AbstractA natural site for water maser emission in AGNs is provided by dusty gas with properties characteristic of broad line region (BLR) clouds. Radiation shielding by dust in the clouds is critical for allowing molecular gas to exist ≤ 1 pc from the central engine. Thus, the innermost radius at which such masers appear should correspond to the grain sublimation radius rsub. We suggest a dynamical model in which the masing clouds are embedded within a magnetized accretion disk wind.


1994 ◽  
Vol 159 ◽  
pp. 463-463
Author(s):  
Chunyan Wei ◽  
Fuzhen Cheng ◽  
Junhan You

For the solution of the puzzling “FeII problem” in active galactic nuclei(AGNs) (Netzer et al. 1983; Wills et al. 1985), we pay our attention to optical band and suggest: (1)the observed so-called “FeII emission lines” features may be blending of FeII multiples and FeI multiples. Our previous work(Wei et al. 1993) has showed that there are many FeI emission lines whose wavelength lie around the observed “FeII emission lines” features. In fact, FeI emission lines have been observed in the spectrum of PHL 1092(Bergeron et al. 1980; Cheng et al. 1993). (2)the emission lines from accretion disk must be considered besides the emission from broad line region.


Sign in / Sign up

Export Citation Format

Share Document