Comparison of cold and heat shocks to induce diploid gynogenesis in Thai walking catfish (Clarias macrocephalus) and performances of gynogens

1995 ◽  
Vol 8 (4) ◽  
pp. 333-341 ◽  
Author(s):  
Uthairat Na-Nakorn
Aquaculture ◽  
1986 ◽  
Vol 54 (1-2) ◽  
pp. 69-76 ◽  
Author(s):  
M.G. Hollebecq ◽  
D. Chourrout ◽  
G. Wohlfarth ◽  
R. Billard

Aquaculture ◽  
2021 ◽  
pp. 737005
Author(s):  
Dung Ho My Nguyen ◽  
Jatupong Ponjarat ◽  
Nararat Laopichienpong ◽  
Ekaphan Kraichak ◽  
Thitipong Panthum ◽  
...  

1999 ◽  
Vol 65 (4) ◽  
pp. 520-526 ◽  
Author(s):  
Uthairat Na-Nakorn ◽  
Nobuhiko Taniguchi ◽  
Estu Nugroho ◽  
Shingo Seki ◽  
Wongpathom Kamonrat

2011 ◽  
Vol 129 (3) ◽  
pp. 739-746 ◽  
Author(s):  
Sappasith Klomklao ◽  
Soottawat Benjakul ◽  
Hideki Kishimura ◽  
Manat Chaijan

2011 ◽  
Vol 11 (1) ◽  
pp. 55 ◽  
Author(s):  
Irene E Samonte-Padilla ◽  
Christophe Eizaguirre ◽  
Jörn P Scharsack ◽  
Tobias L Lenz ◽  
Manfred Milinski

Author(s):  
Georges Hraoui ◽  
Sophie Breton ◽  
Gilles Miron ◽  
Luc H. Boudreau ◽  
Florence Hunter-Manseau ◽  
...  

Frequent heat waves caused by climate change can cause physiological stress in many animals, particularly in sessile ectotherms such as bivalves. Most studies characterizing thermal stress in bivalves focus on evaluating the responses to a single stress event. This does not accurately reflect the reality faced by bivalves which are often subject to intermittent heat waves. Here, we investigated the effect of intermittent heat stress on mitochondrial functions of Eastern oyster Crassostrea virginica which play a key role in setting ectotherms’ thermal tolerance. Specifically, we measured changes in mitochondrial oxygen consumption and H2O2 emission rates before, during and after intermittent 7.5°C heat shocks in oysters acclimated to 15°C and 22.5°C. Our results showed that oxygen consumption was impaired following the first heat shock at both acclimation temperatures. After the second heat shock, results for oysters acclimated to 15°C indicated a return to normal. However, oysters acclimated to 22.5°C struggled more with the compounding effects of intermittent heat shocks as denoted with an increase contribution of FAD-linked substrates to mitochondrial respiration as well as high levels of H2O2 emission rates. However, both acclimated populations showed signs of potential recovery ten days after the second heat shock, reflecting a surprising resilience to heat waves by C. virginica. Thus, this study highlights the important role of acclimation in oyster's capacity to weather intermittent heat shock.


Sign in / Sign up

Export Citation Format

Share Document