scholarly journals Analysis of an observer strategy for initial state reconstruction of wave-like systems in unbounded domains

2020 ◽  
Vol 26 ◽  
pp. 45
Author(s):  
S. Imperiale ◽  
P. Moireau ◽  
A. Tonnoir

We are interested in reconstructing the initial condition of a wave equation in an unbounded domain configuration from measurements available in time on a subdomain. To solve this problem, we adopt an iterative strategy of reconstruction based on observers and time reversal adjoint formulations. We prove the convergence of our reconstruction algorithm with perfect measurements and its robustness to noise. Moreover, we develop a complete strategy to practically solve this problem on a bounded domain using artificial transparent boundary conditions to account for the exterior domain. Our work then demonstrates that the consistency error introduced by the use of approximate transparent boundary conditions is compensated by the stabilization properties obtained from the use of the available measurements, hence allowing to still be able to reconstruct the unknown initial condition.

2020 ◽  
Vol 66 (4) ◽  
pp. 773-793 ◽  
Author(s):  
Arman Shojaei ◽  
Alexander Hermann ◽  
Pablo Seleson ◽  
Christian J. Cyron

Abstract Diffusion-type problems in (nearly) unbounded domains play important roles in various fields of fluid dynamics, biology, and materials science. The aim of this paper is to construct accurate absorbing boundary conditions (ABCs) suitable for classical (local) as well as nonlocal peridynamic (PD) diffusion models. The main focus of the present study is on the PD diffusion formulation. The majority of the PD diffusion models proposed so far are applied to bounded domains only. In this study, we propose an effective way to handle unbounded domains both with PD and classical diffusion models. For the former, we employ a meshfree discretization, whereas for the latter the finite element method (FEM) is employed. The proposed ABCs are time-dependent and Dirichlet-type, making the approach easy to implement in the available models. The performance of the approach, in terms of accuracy and stability, is illustrated by numerical examples in 1D, 2D, and 3D.


2019 ◽  
Vol 99 (1) ◽  
pp. 803-811 ◽  
Author(s):  
Boumediene Hamzi ◽  
Eyad H. Abed

AbstractThe paper studies an extension to nonlinear systems of a recently proposed approach to the definition of modal participation factors. A definition is given for local mode-in-state participation factors for smooth nonlinear autonomous systems. While the definition is general, the resulting measures depend on the assumed uncertainty law governing the system initial condition, as in the linear case. The work follows Hashlamoun et al. (IEEE Trans Autom Control 54(7):1439–1449 2009) in taking a mathematical expectation (or set-theoretic average) of a modal contribution measure over an uncertain set of system initial state. Poincaré linearization is used to replace the nonlinear system with a locally equivalent linear system. It is found that under a symmetry assumption on the distribution of the initial state, the tractable calculation and analytical formula for mode-in-state participation factors found for the linear case persists to the nonlinear setting. This paper is dedicated to the memory of Professor Ali H. Nayfeh.


Author(s):  
Jonathan Heinz ◽  
Miroslav Kolesik

A method is presented for transparent, energy-dependent boundary conditions for open, non-Hermitian systems, and is illustrated on an example of Stark resonances in a single-particle quantum system. The approach provides an alternative to external complex scaling, and is applicable when asymptotic solutions can be characterized at large distances from the origin. Its main benefit consists in a drastic reduction of the dimesnionality of the underlying eigenvalue problem. Besides application to quantum mechanics, the method can be used in other contexts such as in systems involving unstable optical cavities and lossy waveguides.


2008 ◽  
Vol 10 (01) ◽  
pp. 1-16 ◽  
Author(s):  
P. CARDALIAGUET ◽  
M. QUINCAMPOIX

We study a zero-sum differential game where the players have only an unperfect information on the state of the system. In the beginning of the game only a random distribution on the initial state is available. The main result of the paper is the existence of the value obtained through an uniqueness result for Hamilton-Jacobi-Isaacs equations stated on the space of measure in ℝn. This result is the first step for future work on differential games with lack of information.


Sign in / Sign up

Export Citation Format

Share Document