scholarly journals One-dimensional wave equation with set-valued boundary damping: well-posedness, asymptotic stability, and decay rates

Author(s):  
Yacine Chitour ◽  
swann marx ◽  
guilherme mazanti

This paper is concerned with the analysis of a 1D wave equation $z_{tt}-z_{xx}=0$ on $[0,1]$ with a Dirichlet condition at $x=0$ and a damping acting at $x=1$ of the form  $(z_t(t,1),-z_x(t,1))\in\Sigma$ for $t\geq 0$, where $\Sigma$ is a given subset of $\mathbb R^2$. The study is performed within an $L^p$ functional framework, $p\in [1, +\infty]$. We determine conditions on $\Sigma$ ensuring existence and uniqueness of solutions of that wave equation,  its strong stability and uniform global asymptotic stability of the solutions. In the latter case, we study the corresponding decay rates  and their optimality. We first establish a correspondence between the solutions of that wave equation and the iterated sequences of a discrete-time dynamical system in terms of which we investigate the above mentioned issues. This enables us to provide a  necessary and sufficient condition on $\Sigma$ ensuring existence and uniqueness of solutions of the wave equation and an efficient strategy for determining optimal decay rates when $\Sigma$ verifies a generalized sector condition.  In case the boundary damping is subject to perturbations, we derive sharp results regarding asymptotic perturbation rejection and input-to-state issues.

Author(s):  
John P. Quinn ◽  
David L. Russell

SynopsisThis report deals with the asymptotic behaviour of solutions of the wave equation in a domain Ω ⊆Rn. The boundary, Γof Ωft consists of two parts. One part reflects all energy while the other part absorbs energy to a degree. If the energy-absorbing part is non-empty we show that the energy tends to zero as t→∞. With stronger assumptions we are able to obtain decay rates for the energy. Certain relationships with controlability are discussed and used to advantage.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ruy Coimbra Charão ◽  
Alessandra Piske ◽  
Ryo Ikehata

<p style='text-indent:20px;'>We introduce a new model of the logarithmic type of wave like plate equation with a nonlocal logarithmic damping mechanism. We consider the Cauchy problem for this new model in <inline-formula><tex-math id="M1">\begin{document}$ {{\bf R}}^{n} $\end{document}</tex-math></inline-formula>, and study the asymptotic profile and optimal decay rates of solutions as <inline-formula><tex-math id="M2">\begin{document}$ t \to \infty $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M3">\begin{document}$ L^{2} $\end{document}</tex-math></inline-formula>-sense. The operator <inline-formula><tex-math id="M4">\begin{document}$ L $\end{document}</tex-math></inline-formula> considered in this paper was first introduced to dissipate the solutions of the wave equation in the paper studied by Charão-Ikehata [<xref ref-type="bibr" rid="b7">7</xref>]. We will discuss the asymptotic property of the solution as time goes to infinity to our Cauchy problem, and in particular, we classify the property of the solutions into three parts from the viewpoint of regularity of the initial data, that is, diffusion-like, wave-like, and both of them.</p>


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Soh Edwin Mukiawa ◽  
Cyril Dennis Enyi ◽  
Tijani Abdulaziz Apalara

AbstractWe investigate a thermoelastic Bresse system with viscoelastic damping acting on the shear force and heat conduction acting on the bending moment. We show that with weaker conditions on the relaxation function and physical parameters, the solution energy has general and optimal decay rates. Some examples are given to illustrate the findings.


Sign in / Sign up

Export Citation Format

Share Document