scholarly journals Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping–source interaction

2007 ◽  
Vol 236 (2) ◽  
pp. 407-459 ◽  
Author(s):  
Marcelo M. Cavalcanti ◽  
Valéria N. Domingos Cavalcanti ◽  
Irena Lasiecka
Author(s):  
Yacine Chitour ◽  
swann marx ◽  
guilherme mazanti

This paper is concerned with the analysis of a 1D wave equation $z_{tt}-z_{xx}=0$ on $[0,1]$ with a Dirichlet condition at $x=0$ and a damping acting at $x=1$ of the form  $(z_t(t,1),-z_x(t,1))\in\Sigma$ for $t\geq 0$, where $\Sigma$ is a given subset of $\mathbb R^2$. The study is performed within an $L^p$ functional framework, $p\in [1, +\infty]$. We determine conditions on $\Sigma$ ensuring existence and uniqueness of solutions of that wave equation,  its strong stability and uniform global asymptotic stability of the solutions. In the latter case, we study the corresponding decay rates  and their optimality. We first establish a correspondence between the solutions of that wave equation and the iterated sequences of a discrete-time dynamical system in terms of which we investigate the above mentioned issues. This enables us to provide a  necessary and sufficient condition on $\Sigma$ ensuring existence and uniqueness of solutions of the wave equation and an efficient strategy for determining optimal decay rates when $\Sigma$ verifies a generalized sector condition.  In case the boundary damping is subject to perturbations, we derive sharp results regarding asymptotic perturbation rejection and input-to-state issues.


Author(s):  
Xiaopeng Zhao

We study the small data global well-posedness and time-decay rates of solutions to the Cauchy problem for three-dimensional compressible Navier–Stokes–Allen–Cahn equations via a refined pure energy method. In particular, the optimal decay rates of the higher-order spatial derivatives of the solution are obtained, the $\dot {H}^{-s}$ ( $0\leq s<\frac {3}{2}$ ) negative Sobolev norms is shown to be preserved along time evolution and enhance the decay rates.


2021 ◽  
Vol 6 (11) ◽  
pp. 12660-12679
Author(s):  
Xiufang Zhao ◽  
◽  
Ning Duan ◽  

<abstract><p>In this paper, the small initial data global well-posedness and time decay estimates of strong solutions to the Cauchy problem of 3D incompressible liquid crystal system with general Leslie stress tensor are studied. First, assuming that $ \|u_0\|_{\dot{H}^{\frac12+\varepsilon}}+\|d_0-d_*\|_{\dot{H}^{\frac32+\varepsilon}} $ ($ \varepsilon &gt; 0) $ is sufficiently small, we obtain the global well-posedness of strong solutions. Moreover, the $ L^p $–$ L^2 $ ($ \frac32\leq p\leq2 $) type optimal decay rates of the higher-order spatial derivatives of solutions are also obtained. The $ \dot{H}^{-s} $ ($ 0\leq s &lt; \frac12 $) negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates.</p></abstract>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ruy Coimbra Charão ◽  
Alessandra Piske ◽  
Ryo Ikehata

<p style='text-indent:20px;'>We introduce a new model of the logarithmic type of wave like plate equation with a nonlocal logarithmic damping mechanism. We consider the Cauchy problem for this new model in <inline-formula><tex-math id="M1">\begin{document}$ {{\bf R}}^{n} $\end{document}</tex-math></inline-formula>, and study the asymptotic profile and optimal decay rates of solutions as <inline-formula><tex-math id="M2">\begin{document}$ t \to \infty $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M3">\begin{document}$ L^{2} $\end{document}</tex-math></inline-formula>-sense. The operator <inline-formula><tex-math id="M4">\begin{document}$ L $\end{document}</tex-math></inline-formula> considered in this paper was first introduced to dissipate the solutions of the wave equation in the paper studied by Charão-Ikehata [<xref ref-type="bibr" rid="b7">7</xref>]. We will discuss the asymptotic property of the solution as time goes to infinity to our Cauchy problem, and in particular, we classify the property of the solutions into three parts from the viewpoint of regularity of the initial data, that is, diffusion-like, wave-like, and both of them.</p>


2017 ◽  
Vol 35 (3) ◽  
pp. 203 ◽  
Author(s):  
Aissa Guesmia

In this paper, we investigate the well-posedness as well as optimal decay rate estimates of the energy associated with a Kirchhoff-Carrier problem in n-dimensional bounded domain under an internal finite memory. The considered class of memory kernels is very wide and allows us to derive new and optimal decay rate estimates then those ones considered previously in the literature for Kirchhoff-type models.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Soh Edwin Mukiawa ◽  
Cyril Dennis Enyi ◽  
Tijani Abdulaziz Apalara

AbstractWe investigate a thermoelastic Bresse system with viscoelastic damping acting on the shear force and heat conduction acting on the bending moment. We show that with weaker conditions on the relaxation function and physical parameters, the solution energy has general and optimal decay rates. Some examples are given to illustrate the findings.


Sign in / Sign up

Export Citation Format

Share Document