scholarly journals Utilisation of coal for energy production in fuel cells

2016 ◽  
Vol 10 ◽  
pp. 00019
Author(s):  
Magdalena Dudek ◽  
Tadeusz Olkuski ◽  
Barbara Tora ◽  
Przemysław Grzywacz ◽  
Alicja Rapacz-Kmita
Keyword(s):  
2021 ◽  
Author(s):  
Erik Uhlár ◽  
◽  
Jozef Čerňan

In order to help accelerate transition to sustainable and eco-friendly personal transportation in a single engine piston aircraft category we’ve developed a simulation software platform of hydrogen powered aircraft for further research and development. Measurements were carried out on a real reference airplane Cessna 172 R and were crosschecked with an airplane flight manual as well as a computer flight simulation. We also focused on a software-based safety and economy optimization by components usage ratio improvement and inflight energy production and transfer limitations.


2018 ◽  
Vol 47 (24) ◽  
pp. 7864-7869 ◽  
Author(s):  
Saurav Ch. Sarma ◽  
Sebastian C. Peter

Electrochemical oxidation of small molecules such as ethanol, methanol and formic acid on Pd based compounds has a great impact on green energy production in fuel cells.


2018 ◽  
Vol 8 (12) ◽  
pp. 2384 ◽  
Author(s):  
Gene Drendel ◽  
Elizabeth R. Mathews ◽  
Lucie Semenec ◽  
Ashley E. Franks

Microbial fuel cells present an emerging technology for utilizing the metabolism of microbes to fuel processes including biofuel, energy production, and the bioremediation of environments. The application and design of microbial fuel cells are of interest to a range of disciplines including engineering, material sciences, and microbiology. In addition, these devices present numerous opportunities to improve sustainable practices in different settings, ranging from industrial to domestic. Current research is continuing to further our understanding of how the engineering, design, and microbial aspects of microbial fuel cell systems impact upon their function. As a result, researchers are continuing to expand the range of processes microbial fuel cells can be used for, as well as the efficiency of those applications.


2008 ◽  
Vol 58 (3) ◽  
pp. 617-622 ◽  
Author(s):  
Z. Ren ◽  
L. M. Steinberg ◽  
J. M. Regan

Converting biodegradable materials into electricity, microbial fuel cells (MFCs) present a promising technology for renewable energy production in specific applications. Unlike typical soluble substrates that have been used as electron donors in MFC studies, cellulose is unique because it requires a microbial consortium that can metabolize both an insoluble electron donor (cellulose) and electron acceptor (electrode). In this study, electricity generation and the microbial ecology of cellulose-fed MFCs were analyzed using a defined co-culture of Clostridium cellulolyticum and Geobacter sulfurreducens. Fluorescent in situ hybridization and quantitative PCR showed that when particulate MN301 cellulose was used as sole substrate, most Clostridium cells were found adhered to cellulose particles in suspension, while most Geobacter cells were attached to the electrode. By comparison, both bacteria resided in suspension and biofilm samples when soluble carboxymethyl cellulose was used. This distinct function-related distribution of the bacteria suggests an opportunity to optimize reactor operation by settling cellulose and decanting supernatant to extend cellulose hydrolysis and improve cellulose-electricity conversion.


Sign in / Sign up

Export Citation Format

Share Document