scholarly journals Analysis of profitability of using a heat recovery system from grey water discharged from the shower (case study of Poland)

2017 ◽  
Vol 22 ◽  
pp. 00085 ◽  
Author(s):  
Sabina Kordana ◽  
Daniel Słys
2019 ◽  
Vol 42 (2) ◽  
pp. 106-119
Author(s):  
Hassan Jaber ◽  
Thierry Lemenand ◽  
Mohamad Ramadan ◽  
Mahmoud Khaled

2019 ◽  
Vol 85 ◽  
pp. 02007
Author(s):  
Robert Ştefan Vizitiu ◽  
Gavril Sosoi ◽  
Andrei Burlacu ◽  
Florin Emilian Ţurcanu

This paper presents a CFD Heat Transfer Analysis of an originally designed system for heat recovery in the building sector. The heat exchanger has a dual role, which means it will produce simultaneously hot water and warm air. The key to the efficiency of the heat exchanger is the heat pipe system which recovers thermal energy from residual hot water and transfers it to the secondary agents. The paper includes a case study structured by different mesh distributions and flow regimes. The purpose of the heat exchanger is to reduce the costs of producing thermal energy and to increase the overall energy efficiency of buildings.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Hossien Momeni ◽  
Mohammad Mehdi Keshtkar

In industrial refrigeration systems, such as ice rinks, because of consumption of a lot of energy, the selection of a refrigeration system is very important. At this work, environmental considerations are combined with thermodynamics and economics for the comparison of three different refrigeration systems in an ice rink, including the NH3/brine, CO2/brine, and full CO2. The first law of thermodynamics is used to calculate the system's coefficient of performance (COP) and the second law of thermodynamics is applied to quantify the exergy destructions in each component of a refrigeration system. With regard to the above, the exergy efficiency and energy consumption of the systems are determined by taking into account the heat recovery process that has been performed in the above-mentioned cycles. The results indicate that if a heat recovery system has been used in the refrigeration system, coefficient of performance of full CO2 refrigeration system is 33% higher than the CO2/brine and 66% greater than the NH3/brine system. The results also show that, whatever the refrigeration evaporating temperature in the NH3/brine system reaches lower than −12.4 °C, the total cost of this system will be greater than the full CO2 system.


2020 ◽  
Vol 228 ◽  
pp. 110447
Author(s):  
Rabih Murr ◽  
Mahmoud Khaled ◽  
Jalal Faraj ◽  
Elias Harika ◽  
Bakri Abdulhay

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Gunabal S

Waste heat recovery systems are used to recover the waste heat in all possible ways. It saves the energy and reduces the man power and materials. Heat pipes have the ability to improve the effectiveness of waste heat recovery system. The present investigation focuses to recover the heat from Heating, Ventilation, and Air Condition system (HVAC) with two different working fluids refrigerant(R410a) and nano refrigerant (R410a+Al2O3). Design of experiment was employed, to fix the number of trials. Fresh air temperature, flow rate of air, filling ratio and volume of nano particles are considered as factors. The effectiveness is considered as response. The results were analyzed using Response Surface Methodology


Sign in / Sign up

Export Citation Format

Share Document