scholarly journals New means of hydrogen storage – the potentials of methanol as energy storage for excessive windpower in North Germany

2018 ◽  
Vol 70 ◽  
pp. 01004
Author(s):  
Johannes Gulden ◽  
Andreas Sklarow ◽  
Thomas Luschtinetz

The aim of the presented project is the technological development of hydrogen storage in methanol. This technology enables the carbon dioxide-based chemical storage of renewable energies as well as a decentralized supply of energy and hydrogen. Additional advantages are the very good compatibility with the existing infrastructure for liquid energy storage as well as the temporal decoupling of energy production and consumption. The latter can be managed independently, thus taking into account the fluctuating nature of wind and solar energy. The centrepiece is the use of new catalysts and processes that enable the chemical reactions in the methanol cycle under mild conditions.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chih-Ping Yang ◽  
Shih-Hao Yu ◽  
Fu-Der Mai ◽  
Tai-Chih Kuo ◽  
Yu-Chuan Liu

AbstractNowadays, solar energy is the most environmentally friendly energy source to drive many chemical reactions and physical processes. However, the corresponding fabrication procedures for obtaining excellent energy-storage devices are relatively complicated and expensive. In this work, we report an innovative strategy on plasmon-activated water (PAW) serving as energy-storage medium from solar energy. The lifetime of the created energetic PAW solution from hot electron transfer (HET) on Au nanoparticles (AuNPs) illuminated with sunshine can last for 2 days, making the energy-storage system is practically available. Encouragingly, the energy-conversion efficiency from the solar energy in the PAW solution is ca. 6.7%. Compared to conventional deionized (DI) water solution, the prepared metastable PAW solution exhibited distinctly higher chemical potential at room temperature. It demonstrates abilities in faster evaporation and enhancing chemical reactions, including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Our proposed strategy on the simple and cheap energy-storage system based on prepared PAW utilizing solar energy is the first time shown in the literature.


Author(s):  
Jakub Edward Zaleski

Abstract This article is focused on analysing the present state of renewable electricity production and consumption coverage in Germany, concentrating on the intermittence of wind and solar energy production and considering the significance of the wind silence phenomenon. The development and promotion of renewable energy is a major goal set out by politicians of which one example is the German plan “Energiewende”. The author examines wind and solar energy complementarity and attempts assessing the possibility of basing Germanys’ electricity production on renewable energy sources, without significant advancements in technology and changes in consumer behaviour. Using the analysis based on hourly data of consumption and production by source of electricity in Germany in 2016, the research addresses the issues of renewable energy source effectiveness, intermittence and points to the critical matter of periodical unavailability of wind and solar energy.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3775
Author(s):  
Aleksander Radovan ◽  
Viktor Šunde ◽  
Danijel Kučak ◽  
Željko Ban

Solar energy production based on a photovoltaic system is closely related to solar irradiance. Therefore, the planning of production is based on the prediction of solar irradiance. The optimal use of different energy storage systems requires an accurate prediction of solar irradiation with at least an hourly time horizon. In this work, a solar irradiance prediction method is developed based on the prediction of solar shading by clouds. The method is based on determining the current cloud position and estimating the velocity from a sequence of multiple images taken with a 180-degree wide-angle camera with a resolution of 5 s. The cloud positions for the next hour interval are calculated from the estimated current cloud position and velocity. Based on the cloud position, the percentage of solar overshadowing by clouds is determined, i.e., the solar overshadowing curve for the next hour interval is calculated. The solar irradiance is determined by normalizing the percentage of the solar unshadowing curve to the mean value of the irradiance predicted by the hydrometeorological institute for that hourly interval. Image processing for cloud detection and localization is performed using a computer vision library and the Java programming language. The algorithm developed in this work leads to improved accuracy and resolution of irradiance prediction for the next hour interval. The predicted irradiance curve can be used as a predicted reference for solar energy production in energy storage system optimization.


2014 ◽  
Vol 43 (22) ◽  
pp. 7838-7869 ◽  
Author(s):  
Suojiang Zhang ◽  
Jian Sun ◽  
Xiaochun Zhang ◽  
Jiayu Xin ◽  
Qingqing Miao ◽  
...  

We review ionic liquid-based processes in the renewable energy field, including CO2 conversion, biomass conversion, solar energy and energy storage.


2018 ◽  
Vol 1 (2) ◽  
pp. 40-51 ◽  
Author(s):  
Muhammad Burhan ◽  
Muhammad Wakil Shahzad ◽  
Kim Choon Ng

Standalone power systems have vital importance as energy source for remote area. On the other hand, a significant portion of such power production is used for cooling purposes. In this scenario, renewable energy sources provide sustainable solution, especially solar energy due to its global availability. Concentrated photovoltaic (CPV) system provides highest efficiency photovoltaic technology, which can operate at x1000 concentration ratio. However, such high concentration ratio requires heat dissipation from the cell area to maintain optimum temperature. This paper discusses the size optimization algorithm of sustainable cooling system using CPVT. Based upon the CPV which is operating at x1000 concentration with back plate liquid cooling, the CPVT system size is optimized to drive a hybrid mechanical vapor compression (MVC) chiller and adsorption chiller, by utilizing both electricity and heat obtained from the solar system. The electrolysis based hydrogen is used as primary energy storage system along with the hot water storage tanks. The micro genetic algorithm (micro-GA) based optimization algorithm is developed to find the optimum size of each component of CPVT-Cooling system with uninterrupted power supply and minimum cost, according to the developed operational strategy. The hybrid system is operated with solar energy system efficiency of 71%.


2021 ◽  
pp. 100764
Author(s):  
Qiao Xu ◽  
Xianglei Liu ◽  
Qingyang Luo ◽  
Yanan Song ◽  
Haolei Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document