scholarly journals Artificial neural networks and computer image analysis in the evaluation of selected quality parameters of pea seeds

2019 ◽  
Vol 132 ◽  
pp. 01027 ◽  
Author(s):  
Katarzyna Szwedziak

The aim of the study was to develop an innovative method of modelling the process of evaluating the quality of agricultural crops on the basis of computer image analysis and artificial neural networks (ANN). It was therefore assumed that on the basis of the prepared application for processing and analysing the acquired digital images, based on the RGB colour recognition model, a quick and good method of assessing the quality of products would be obtained. An experiment was conducted on the evaluation of selected parameters of pea seeds quality using computer image analysis and the obtained results were verified by artificial neural networks using the geostatic function.

2020 ◽  
Vol 10 (16) ◽  
pp. 5721
Author(s):  
Katarzyna Szwedziak ◽  
Żaneta Grzywacz ◽  
Ewa Polańczyk ◽  
Piotr Bębenek ◽  
Marian Olejnik

The paper presents the method of using vision techniques and artificial neural networks to assess the degree of contamination of cereal during grain reception. The aim of the work is to optimize the management of the contaminant evaluation process of grain mass in warehouse and during purchase using vision techniques based on computer image analysis in order to expedite laboratory work. The obtained photographs of wheat seed samples were analyzed using the “Agropol V06” computer application and neural analysis of the obtained empirical results was performed. The application of computer image analysis reduced the time necessary for the quality assessment of the examined material compared to traditional methods. The generated models were characterized by good parameters and high quality, obtaining a high R2 coefficient at the level of 0.999. As part of the investment project, savings resulting from the time of goods receipt and further production process were made. Profitability was estimated at 191.43% per day. The analysis was made without taking into account other costs related to the business activity. The straight payback period is 3 years.


Author(s):  
Bhargavi Munnaluri ◽  
K. Ganesh Reddy

Wind forecasting is one of the best efficient ways to deal with the challenges of wind power generation. Due to the depletion of fossil fuels renewable energy sources plays a major role for the generation of power. For future management and for future utilization of power, we need to predict the wind speed.  In this paper, an efficient hybrid forecasting approach with the combination of Support Vector Machine (SVM) and Artificial Neural Networks(ANN) are proposed to improve the quality of prediction of wind speed. Due to the different parameters of wind, it is difficult to find the accurate prediction value of the wind speed. The proposed hybrid model of forecasting is examined by taking the hourly wind speed of past years data by reducing the prediction error with the help of Mean Square Error by 0.019. The result obtained from the Artificial Neural Networks improves the forecasting quality.


2019 ◽  
Author(s):  
Chem Int

Recently, process control in wastewater treatment plants (WWTPs) is, mostly accomplished through examining the quality of the water effluent and adjusting the processes through the operator’s experience. This practice is inefficient, costly and slow in control response. A better control of WTPs can be achieved by developing a robust mathematical tool for performance prediction. Due to their high accuracy and quite promising application in the field of engineering, Artificial Neural Networks (ANNs) are attracting attention in the domain of WWTP predictive performance modeling. This work focuses on applying ANN with a feed-forward, back propagation learning paradigm to predict the effluent water quality of the Habesha brewery WTP. Data of influent and effluent water quality covering approximately an 11-month period (May 2016 to March 2017) were used to develop, calibrate and validate the models. The study proves that ANN can predict the effluent water quality parameters with a correlation coefficient (R) between the observed and predicted output values reaching up to 0.969. Model architecture of 3-21-3 for pH and TN, and 1-76-1 for COD were selected as optimum topologies for predicting the Habesha Brewery WTP performance. The linear correlation between predicted and target outputs for the optimal model architectures described above were 0.9201 and 0.9692, respectively.


Sign in / Sign up

Export Citation Format

Share Document