scholarly journals The concept of low-cost didactic rig in the field of heat pumps

2020 ◽  
Vol 154 ◽  
pp. 05007
Author(s):  
Grzegorz Pełka ◽  
Wojciech Luboń ◽  
Tomasz Pudlik ◽  
Daniel Malik

The Centre of Sustainable Development and Energy Saving in Miękinia conducts broad didactic activities for various groups of students. For its own purposes, and also as a concept to use for other didactic centers, a low-cost didactic stand in the scope of heat pumps was designed and implemented. The constructed device presents the operating principles and schematically describes the basic elements of the ground source heat pump system. The device was constructed using a used piston and hermetic compressor from an old fridge. As an evaporator and condenser, a heat exchanger made from copper pipe curved meandering was used. A carefully selected capillary tube was used as an expansion element. The distribution of the components and the visualization of the didactic rig were devised. The whole concept assumed the usage of propane (R290) as an ecological refrigerant. The project also includes cost statements for creating an alternative to a commercial, low-cost stand for teaching purposes at various levels of education and suggests ways of using the set.

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2020 ◽  
Author(s):  
Jeffrey Spitler ◽  
Signhild Gehlin

When the new student center at Stockholm University in Sweden was completed in the fall of 2013 it was thoroughly instrumented. The 6300 m2 four-story building with offices, a restaurant, study lounges, and meeting rooms was designed to be energy efficient with a planned total energy use of 25 kWh/m2/year. Space heating and hot water are provided by a ground source heat pump (GSHP) system consisting of five 40 kW off-the-shelf water-to-water heat pumps connected to 20 boreholes in hard rock, drilled to a depth of 200 m. Space cooling is provided by direct cooling from the boreholes. This paper uses measured performance data from Studenthuset to calculate the actual thermal performance of the GSHP system during one of its early years of operation. Monthly system coefficients-of-performance and coefficients-of-performance for both heating and cooling operation are presented. In the first months of operation, several problems were corrected, leading to improved performance. This paper provides long-term measured system performance data from a recently installed GSHP system, shows how the various system components affect the performance, presents an uncertainty analysis, and describes how some unanticipated consequences of the design may be ameliorated. Seasonal performance factors (SPF) are evaluated based on the SEPEMO (“SEasonal PErformance factor and MOnitoring for heat pump systems”) boundary schema. For heating (“H”), SPFs of 3.7 ± 0.2 and 2.7 ± 0.13 were obtained for boundaries H2 and H3, respectively. For cooling (“C”), a C2 SPF of 27 ± 5 was obtained. Results are compared to measured performance data from 55 GSHP systems serving commercial buildings that are reported in the literature.


2019 ◽  
Vol 116 ◽  
pp. 00014
Author(s):  
Andrzej Bugaj ◽  
Maciej Miniewicz

This paper presents results obtained from seasonal evaluation of ground source heat pump (GSHP) and exhaust air heat pump (EAHP) systems used for heating and ventilation of a school building. A Matlab simulation program was developed with models of the following elements: the building thermal performance, central heating and ventilation installations, the ground source heat pump with the ground source heat exchanger and exhaust air heat pumps in air handling units. The system based exclusively on the GSHP attaining all heating needs of the central heating and ventilation installations was compared with the combined system of the GSHP and the EAHP. The analysis was based on hourly calculations of all energy capacities and COPs as well as seasonal performance factors. In addition, the energy ratings in terms of seasonal usage of delivered, renewable, auxiliary and primary energy were performed. Those energy ratings enabled the estimation of seasonal CO2 emissions in all analysed systems. The combined application of the GSHP and the EAHP in the building gave the lowest values of primary energy consumption and CO2 emissions among all considered systems.


2021 ◽  
Vol 246 ◽  
pp. 06009
Author(s):  
Janne Hirvonen ◽  
Juha Jokisalo ◽  
Risto Kosonen

Most Finnish residential buildings have been built before ventilation heat recovery options became mandatory. Exhaust air heat pumps are an effective way to reduce emissions, but they cannot cover all heating demand. Ground-source heat pumps can be designed to meet all loads, but they require corresponding amounts of space both above and below ground. This simulation study combines residential ventilation and sewage waste heat with a ground-source heat pump system to improve system sustainability and cost-effectiveness. A hybrid waste heat and ground-source heat pump system was shown to have 20% lower life cycle costs compared to a pure ground-source heat pump system. It also maintained sustainable ground temperature levels over the long term, while reducing above-ground space requirements by 95%.


2020 ◽  
Vol 182 ◽  
pp. 03006
Author(s):  
Yauheni Kachalouski ◽  
Matuška Tomáš

A performance of air-to-water and brine-to-water heat pump for domestic hot water preparation was analyzed in different climates of Europe. Air-source heat pumps are widely used energy source for domestic applications with low operation costs. Their system SPF was found at level of 3.0 for domestic hot water preparation for medium latitudes in Europe. Investigations on the ground-source heat pump performance show their average SPF are close to air-source technology.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4527
Author(s):  
Hao Liu ◽  
Hongyi Zhang ◽  
Saqib Javed

Recent data suggest that heat pumps, despite having the potential to cover over 90% of the global space and water heating demands, only provide less than 5% of global heating. Heat pumps, in general, and ground source heat pumps, specifically, offer significant potential for energy savings and carbon emissions reduction in buildings. The realization of these potential benefits, however, requires proper design, installation, and operation of the entire heat pump system. This paper presents the performance analysis of a Swedish ground source heat pump system providing space heating and hot water to a sports clubhouse. The installation has been carefully instrumented to enable full characterization of the whole system including auxiliary components such as circulation pumps and supplementary heating. Seasonal performance factors, calculated for monthly and annual periods using high-quality, high-resolution measurement data collected over three years of system operation, have been reported based on the SEPEMO (SEasonal PErformance factor and MOnitoring for heat pump systems) and Annex 52 boundary schemes for evaluating and benchmarking the performance of the ground source heat pump system. The auxiliary system components were shown to have a large impact on the overall performance of the system. In particular, the legionella protection system was found to affect performance considerably. Recommendations as to how to improve the performance of the system under study and other similar systems are made from the design, installation, and operation perspectives.


Solar Energy ◽  
2021 ◽  
Vol 221 ◽  
pp. 10-29
Author(s):  
Bo Xiang ◽  
Yasheng Ji ◽  
Yanping Yuan ◽  
Chao Zeng ◽  
Xiaoling Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document