scholarly journals Entrapment Formulation for env-Tm Gene Based on Chitosan Low Molecular Weight as a Jembrana Disease Virus Vaccine Candidate

2021 ◽  
Vol 226 ◽  
pp. 00026
Author(s):  
Indra Lesmana Rahayu ◽  
Asmarani Kusumawati

Jembrana disease (JD) caused by Jembrana Disease Virus (JDV) becomes an obstacle in Bali cattle (Bos javanicus). The development of JD vaccines has a critical meaning to prevent losses in the B. javanicus in Indonesia and is one of the models in the development of the Human Immunodeficiency Virus (HIV) vaccine. The development of vaccines for JDV has carried out DNA vaccines that are expected to provide better immunological effects. This study aimed to determine the low molecular weight chitosan (LC) entrapment towards pEGFP-C1-env-Tm in the formation of Chitosan Nanoparticles Low/pEGFP-C1-env-Tm complex. The env-Tm gene was inserted in pEGFP-C1 into the pEGFPC1/ env-Tm construct transformed on the E. coli DH5α host. The construct was formulated into LC/pEGFP-C1/env-Tm complex with a low molecular weight chitosan concentration of 0.06 % and the ratio of pEGFP-C1/env-Tm: LC (wt/wt) was 1:0.5-1:3. The complexes were then analyzed by gel retardation assay agarose 1 %. The results of this study indicated that the best entrapment results of low molecular weight chitosan to pEGFPC1/ env-Tm was in the mass ratio of pEGFP-C1/env-Tm: LC was 1:2. The best formulation entrapment for env-Tm by low molecular weight chitosan 0.06 % is in the rate 1:2.

Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1681 ◽  
Author(s):  
Janaína Artem Ataide ◽  
Eloah Favero Gérios ◽  
Letícia Caramori Cefali ◽  
Ana Rita Fernandes ◽  
Maria do Céu Teixeira ◽  
...  

Bromelain, a set of proteolytic enzymes potential pharmaceutical applications, was encapsulated in chitosan nanoparticles to enhance enzyme stability, and the effect of different chitosan sources was evaluated. Chitosan types (i.e., low molecular weight chitosan, chitosan oligosaccharide lactate, and chitosan from shrimp shells) produced nanoparticles with different physicochemical properties, however in all cases, particle size and zeta potential decreased, and polydispersity index increased after bromelain addition. Bromelain encapsulation was higher than 84% and 79% for protein content and enzymatic activity, respectively, with low molecular weight chitosan presenting the highest encapsulation efficiency. Nanoparticle suspension was also tested for accelerated stability and rheological behavior. For the chitosan–bromelain nanoparticles, an instability index below 0.3 was recorded and, in general, the loading of bromelain in chitosan nanoparticles decreased the cohesiveness of the final suspension.


2004 ◽  
Vol 67 (2) ◽  
pp. 396-398 ◽  
Author(s):  
GUO-JANE TSAI ◽  
SHU-LIN ZHANG ◽  
PEI-LING SHIEH

A water-soluble chitosan hydrolysate with high activity against Escherichia coli was obtained during cellulase digestion of chitosan for 18 h. This 18-h hydrolysate is composed of low-molecular-weight chitosan (LMWC), with a molecular weight of 12.0 kDa, and chitooligosaccharides, which are composed of sugars with a degree of polymerization of 1 to 8. LMWC has a strong activity at 100 ppm against many pathogens and yeast species, including Bacillus cereus, E. coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella enterica serovar Typhi, and Saccharomyces cerevisiae, while the chitooligosaccharides have much weaker antimicrobial activity than does LMWC. Accordingly, the antimicrobial activity against E. coli in the 18-h hydrolysate proved to come mainly from the presence of LMWC.


2014 ◽  
Vol 22 (8) ◽  
pp. 805-808 ◽  
Author(s):  
Hyungjun Kim ◽  
Eunhye Lee ◽  
In-Hyun Lee ◽  
Jinju Lee ◽  
Jinjoo Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document