scholarly journals Research and Analysis on Present Situation of Desert Sand Concrete

2021 ◽  
Vol 271 ◽  
pp. 02004
Author(s):  
Ji Yanjun ◽  
Liu Chuang ◽  
Ding Zhichao

Due to the rapid development of civil engineering industry, natural medium and coarse sand resources are increasingly scarce. If desert sand is studied and applied in the field of civil engineering, the shortage of sand resources and high unit price can be greatly solved.Therefore, it is very important to study desert sand instead of ordinary sand. Although the application of desert sand in engineering has made rapid development, many engineers and researchers have done a lot of experiments and in-depth research on the physical and chemical properties, mechanical properties and compaction characteristics of desert sand, and also made a lot of experimental research results. However, at present, because of the different engineering properties, different deserts are used and the test methods are different. Generally speaking, the understanding of this special material with engineering properties is not mature at home and abroad, and it is not widely used in civil engineering.

2018 ◽  
Vol 766 ◽  
pp. 305-310 ◽  
Author(s):  
Chayanee Tippayasam ◽  
Sarochapat Sutikulsombat ◽  
Jamjuree Paramee ◽  
Cristina Leonelli ◽  
Duangrudee Chaysuwan

Geopolymer is a greener alternative cement produced from the reaction of pozzolans and strong alkali solutions. Generally, the cement industry is one of largest producers of CO2that caused global warming. For geopolymer mortar usage, Portland cement is not utilized at all. In this research, geopolymer mortars were prepared by mixing metakaolin, various wastes (fly ash, bagasse ash and rice husk ash) varied as 80:20, 50:50 and 20:80, 15M NaOH, Na2SiO3and sand. The influence of various parameters such as metakaolin to ashes ratios and pozzolans to alkali ratios on engineering properties of metakaolin blended wastes geopolymer mortar were studied. Compressive strength tests were carried out on 25 x 25 x 25 mm3cube geopolymer mortar specimens at 7, 14, 21, 28 and 91 air curing days. Physical and chemical properties were also investigated at the same times. The test results revealed that the highest compressive strength was 20% metakaolin - 80% fly ash geopolymer mortar. When the curing times increases, the compressive strength of geopolymer mortar also increases. The mixing of metakaolin and bagasse ash/rice husk ash presented lower compressive strength but higher water absorption and porosity. For FTIR results, Si-O, Al-O and Si-O-Na+were found. Moreover, the geopolymer mortar could easily plastered on the wall.


Micromachines ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 529 ◽  
Author(s):  
Zhaozheng Yu ◽  
Huanyu Cheng

With the rapid development of bio-integrated devices and tissue adhesives, tunable adhesion to soft biological tissues started gaining momentum. Strong adhesion is desirable when used to efficiently transfer vital signals or as wound dressing and tissue repair, whereas weak adhesion is needed for easy removal, and it is also the essential step for enabling repeatable use. Both the physical and chemical properties (e.g., moisture level, surface roughness, compliance, and surface chemistry) vary drastically from the skin to internal organ surfaces. Therefore, it is important to strategically design the adhesive for specific applications. Inspired largely by the remarkable adhesion properties found in several animal species, effective strategies such as structural design and novel material synthesis were explored to yield adhesives to match or even outperform their natural counterparts. In this mini-review, we provide a brief overview of the recent development of tunable adhesives, with a focus on their applications toward bio-integrated devices and tissue adhesives.


Sign in / Sign up

Export Citation Format

Share Document