Development of Geopolymer Mortar from Metakaolin Blended with Agricultural and Industrial Wastes

2018 ◽  
Vol 766 ◽  
pp. 305-310 ◽  
Author(s):  
Chayanee Tippayasam ◽  
Sarochapat Sutikulsombat ◽  
Jamjuree Paramee ◽  
Cristina Leonelli ◽  
Duangrudee Chaysuwan

Geopolymer is a greener alternative cement produced from the reaction of pozzolans and strong alkali solutions. Generally, the cement industry is one of largest producers of CO2that caused global warming. For geopolymer mortar usage, Portland cement is not utilized at all. In this research, geopolymer mortars were prepared by mixing metakaolin, various wastes (fly ash, bagasse ash and rice husk ash) varied as 80:20, 50:50 and 20:80, 15M NaOH, Na2SiO3and sand. The influence of various parameters such as metakaolin to ashes ratios and pozzolans to alkali ratios on engineering properties of metakaolin blended wastes geopolymer mortar were studied. Compressive strength tests were carried out on 25 x 25 x 25 mm3cube geopolymer mortar specimens at 7, 14, 21, 28 and 91 air curing days. Physical and chemical properties were also investigated at the same times. The test results revealed that the highest compressive strength was 20% metakaolin - 80% fly ash geopolymer mortar. When the curing times increases, the compressive strength of geopolymer mortar also increases. The mixing of metakaolin and bagasse ash/rice husk ash presented lower compressive strength but higher water absorption and porosity. For FTIR results, Si-O, Al-O and Si-O-Na+were found. Moreover, the geopolymer mortar could easily plastered on the wall.

2015 ◽  
Vol 804 ◽  
pp. 129-132
Author(s):  
Sumrerng Rukzon ◽  
Prinya Chindaprasirt

This research studies the potential for using waste ash from industrial and agricultural by-products as a pozzolanic material. Classified fly ash (FA) and ground rice husk ash (RA) were the materials used. Water requirement, compressive strength and porosity of cement mortar were investigated. Test results indicated that FA and RA (waste ash) have a high potential to be used as a good pozzolanic material. The water requirement of mortar mix decreases with the increases in fly ash content. For ground rice husk ash (RA), the water requirement of mortar mix increases with the increases in rice husk ash content. In addition, the reduction in porosity was associated with the increase in compressive strength.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
G. V. Rama Subbarao ◽  
D. Siddartha ◽  
T. Muralikrishna ◽  
K. S. Sailaja ◽  
T. Sowmya

Soil existing at a particular site may not be appropriate for construction of engineering structures. The present study made an attempt to enhance the geotechnical properties of a soil replaced with industrial wastes having pozzolanic value like rice husk ash (RHA) and fly ash (FA). Soil is replaced with RHA in 2%, 4%, and 6% to dry weight of soil. It is observed that soil replaced with 4% RHA is the optimum for the soil used in this study from geotechnical point of view. To know the influence of fly ash, soil is further replaced with 4% FA along with 4% RHA. It is found that results of soil replacement by both RHA and FA proved to be soil modification and not the improvement. Hence, a cost-effective accelerator like lime is used for further replacing the above soil-4%, RHA-4% FA mix. The optimum lime content is found to be 4%.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
M. R. Karim ◽  
M. F. M. Zain ◽  
M. Jamil ◽  
F. C. Lai

The increasing demand and consumption of cement have necessitated the use of slag, fly ash, rice husk ash (RHA), and so forth as a supplement of cement in concrete construction. The aim of the study is to develop a zero-cement binder (Z-Cem) using slag, fly ash, and RHA combined with chemical activator. NaOH, Ca(OH)2, and KOH were used in varying weights and molar concentrations. Z-Cem was tested for its consistency, setting time, flow, compressive strength, XRD, SEM, and FTIR. The consistency and setting time of the Z-Cem paste increase with increasing RHA content. The Z-Cem mortar requires more superplasticizer to maintain a constant flow of110±5% compared with OPC. The compressive strength of the Z-Cem mortar is significantly influenced by the amounts, types, and molar concentration of the activators. The Z-Cem mortar achieves a compressive strength of 42–44 MPa at 28 days with 5% NaOH or at 2.5 molar concentrations. The FTIR results reveal that molecules in the Z-Cem mortar have a silica-hydrate (Si-H) bond with sodium or other inorganic metals (i.e., sodium/calcium-silica-hydrate-alumina gel). Therefore, Z-Cem could be developed using the aforementioned materials with the chemical activator.


2019 ◽  
Author(s):  
Ramadhansyah Putra Jaya ◽  
Mohd Ibrahim Mohd Yusak ◽  
Mohd Rosli Hainin ◽  
Nordiana Mashros ◽  
Muhammad Naqiuddin Mohd Warid ◽  
...  

2019 ◽  
Vol 798 ◽  
pp. 364-369 ◽  
Author(s):  
Khemmakorn Gomonsirisuk ◽  
Parjaree Thavorniti

The aim of this work is to study the feasibility of preparation of fly ash based geopolymer using sodium water glass from agricultural waste as alternative activators. Rice husk ash and bagasse ash were used as raw materials for producing sodium water glass solution. The sodium water glass were produced by mixing rice husk ash and bagasse ash with NaOH in ball mill and boiling. The prepared sodium water glass were analyzed and used in geopolymer preparation process. The geopolymer paste were prepared by adding the obtained water glass and NaOH with fly ash. After cured at ambient temperature for 7 days, mechanical properties were investigated. Bonding and phases of the geopolymer were also characterized. The geopolymer from rice husk ash presented highest compressive strength about 23 MPa while the greatest for bagasse ash was about 16 MPa.


2007 ◽  
Vol 352 ◽  
pp. 281-285 ◽  
Author(s):  
P. Sujaridworakun ◽  
Supatra Jinawath ◽  
W. Panpa ◽  
Akira Nakajima ◽  
Masahiro Yoshimura

Photocatalyst materials were prepared as a hybrid between TiO2 /SiO2 via low temperature hydrothermal method (150oC) without further heat treatment. Porous silica from rice husk ash was used as a support for fine TiO2 particles which acted as a photocatalyst when radiated with a UV light. TiO2-deposited SiO2 was successfully prepared through hydrolysis of TiOSO4 solution by controlling synthesis parameters such as pH ,concentration of TiOSO4, temperature and time under hydrothermal treatment. The obtained products were characterized for physical and chemical properties by means of XRD, XRF, BET and TEM . It was found that pH had an influence on the crystallization of TiO2, and under an appropriated pH, only anatase presented along with amorphous phase. High crystallinity of nano-crystalline anatase ( about 5 nm) deposited on silica surface was observed through TEM. Adsorption and photocatalytic performances of the prepared catalyst were evaluated in methylene blue aqueous solution in the dark and under ultraviolet ray irradiation, respectively. Due to the synergetic functions of adsorption by porous substrate and decomposition by TiO2 photocatalyst, an enhancing of photocatalytic activity for decomposition of organic pollutants in water under UV rays was obtained.


Author(s):  
Aikot Pallikkara Shashikala ◽  
Praveen Nagarajan ◽  
Saranya Parathi

Production of Portland cement causes global warming due to the emission of greenhouse gases to the environment. The need for reducing the amount of cement is necessary from sustainability point of view. Alkali activated and geopolymeric binders are used as alternative to cement. Industrial by-products such as fly ash, ground granulated blast furnace slag (GGBS), silica fume, rice husk ash etc. are commonly used for the production of geopolymer concrete. This paper focuses on the development of geopolymer concrete from slag (100% GGBS). Effect of different cementitious materials such as lime, fly ash, metakaolin, rice husk ash, silica fume and dolomite on strength properties of slag (GGBS) based geopolymer concrete are also discussed. It is observed that the addition of dolomite (by-products from rock crushing plants) into slag based geopolymer concrete reduces the setting time, enhances durability and improves rapidly the early age strength of geopolymer concrete. Development of geopolymer concrete with industrial by-products is a solution to the disposal of the industrial wastes. The quick setting concrete thus produced can reduce the cost of construction making it sustainable also.


2015 ◽  
Vol 754-755 ◽  
pp. 468-472 ◽  
Author(s):  
Chao Lung Hwang ◽  
Trong Phuoc Huynh

This work investigates the possibility of using fly ash (FA) and Vietnam residual rice husk ash (RHA) in producing unfired building bricks with applying densified mixture design algorithm (DMDA) method. In this research, little amount of cement was added into the mixtures as binder substitution. Unground rice husk ash (URHA), an agricultural by-product, was used as partial fine aggregate replacement (10% and 30%) in the mixtures. The solid bricks of 220×105×60 mm in size were prepared in this study. The hardened properties of the bricks were investigated including compressive strength, flexural strength and water absorption according to corresponding Vietnamese standards. Forming pressure of 35 MPa was applied to form the solid bricks in the mold. The test results show that all brick specimens obtained good mechanical properties, which were well conformed to Vietnamese standard. Compressive strength and flexural strength of the bricks were respectively in range of 13.81–22.06 MPa and 2.25–3.47 MPa. It was definitely proved many potential applications of FA and RHA in the production of unfired building bricks.


2014 ◽  
Vol 6 (3) ◽  
pp. 421-430 ◽  
Author(s):  
M.S. Sultana ◽  
M.I. Hossain ◽  
M.A. Rahman ◽  
M.H. Khan

Effects of rice husk ash and fly ash on properties of red clay collected from Naogaon district of Bangladesh were investigated. Different percentages of rice husk ash (RHA) and fly ash (5%, 10% and 15%) were thoroughly mixed with clay to analyse various physical and chemical properties of clay followed by heat treatment of 8000C to 11000C. The samples were tested for compressive strength, linear shrinkage, water absorption, porosity and bulk density. XRD analysis indicates the clay sample was mainly illite type. Water absorption and porosity increased with increasing percentage of ashes. The percentage of water absorption was within 6 to 10% for different mixture which may be suitable for ceramic and tiles purposes. Both fly ash and RHA of 15% could be used to improve some properties of clay. The optimum firing temperature for all the samples was 10500C. XRD pattern of clay with fly ash and rice husk ash heated at 10500C confirms the presence of feldspar and quartz as major phase and hematite (Fe2O3) and cristobalite phase as minor phase. This red clay deposits reinforced with different appropriate quantities of rice husk ash and fly ash could be used for various low temperature applications in industry and construction purposes. © 2014 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v6i3.15343 J. Sci. Res. 6 (3), 421-430 (2014)


Sign in / Sign up

Export Citation Format

Share Document