scholarly journals Research on the air quality prediction model of Wuhai mining area based on deep learning

2021 ◽  
Vol 300 ◽  
pp. 02005
Author(s):  
Jinghua Wang ◽  
Jin Cheng ◽  
Fang Liu ◽  
Lei Yan ◽  
Taijie Tang

With the large-scale and high-intensity mining of coal resources in the Wuhai mining area, the destruction of soil and erosion of rocks has intensified, causing a large amount of surface soil spalling from the mine body and serious damage to the surface vegetation, which has had a serious impact on the quality of the environment in and around the mine. This paper focuses on the corresponding early warning research on air quality in the mining area of Wuhai, and constructs Deep Recurrent Neural Network (DRNN) and Deep Long Short Time Memory Neural Network (DLSTM) air quality prediction models based on the filtered weather factors. The simulation results are also compared and find that the prediction results of DLSTM are better than those of DRNN, with a prediction accuracy of 92.85%. The model is able to accurately predict the values and trends of various air pollutant concentrations in the mining area of Wuhai.

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jiangeng Li ◽  
Xingyang Shao ◽  
Rihui Sun

To avoid the adverse effects of severe air pollution on human health, we need accurate real-time air quality prediction. In this paper, for the purpose of improve prediction accuracy of air pollutant concentration, a deep neural network model with multitask learning (MTL-DBN-DNN), pretrained by a deep belief network (DBN), is proposed for forecasting of nonlinear systems and tested on the forecast of air quality time series. MTL-DBN-DNN model can solve several related prediction tasks at the same time by using shared information contained in the training data of different tasks. In the model, DBN is used to learn feature representations. Each unit in the output layer is connected to only a subset of units in the last hidden layer of DBN. Such connection effectively avoids the problem that fully connected networks need to juggle the learning of each task while being trained, so that the trained networks cannot get optimal prediction accuracy for each task. The sliding window is used to take the recent data to dynamically adjust the parameters of the MTL-DBN-DNN model. The MTL-DBN-DNN model is evaluated with a dataset from Microsoft Research. Comparison with multiple baseline models shows that the proposed MTL-DBN-DNN achieve state-of-art performance on air pollutant concentration forecasting.


2020 ◽  
Author(s):  
Hamza Turabieh ◽  
Alaa Sheta ◽  
Malik Braik ◽  
Elvira Kovač-Andrić

To fulfill the national air quality standards, many countries have created emissions monitoring strategies on air quality. Nowadays, policymakers and air quality executives depend on scientific computation and prediction models to monitor that cause air pollution, especially in industrial cities. Air pollution is considered one of the primary problems that could cause many human health problems such as asthma, damage to lungs, and even death. In this study, we present investigated development forecasting models for air pollutant attributes including Particulate Matters (PM2.5, PM10), ground-level Ozone (O3), and Nitrogen Oxides (NO2). The dataset used was collected from Dubrovnik city, which is located in the east of Croatia. The collected data has missing values. Therefore, we suggested the use of a Layered Recurrent Neural Network (L-RNN) to impute the missing value(s) of air pollutant attributes then build forecasting models. We adopted four regression models to forecast air pollutant attributes, which are: Multiple Linear Regression (MLR), Decision Tree Regression (DTR), Artificial Neural Network (ANN) and L-RNN. The obtained results show that the proposed method enhances the overall performance of other forecasting models.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Hong Zheng ◽  
Haibin Li ◽  
Xingjian Lu ◽  
Tong Ruan

Air quality prediction is an important research issue due to the increasing impact of air pollution on the urban environment. However, existing methods often fail to forecast high-polluting air conditions, which is precisely what should be highlighted. In this paper, a novel multiple kernel learning (MKL) model that embodies the characteristics of ensemble learning, kernel learning, and representative learning is proposed to forecast the near future air quality (AQ). The centered alignment approach is used for learning kernels, and a boosting approach is used to determine the proper number of kernels. To demonstrate the performance of the proposed MKL model, its performance is compared to that of classical autoregressive integrated moving average (ARIMA) model; widely used parametric models like random forest (RF) and support vector machine (SVM); popular neural network models like multiple layer perceptron (MLP); and long short-term memory neural network. Datasets acquired from a coastal city Hong Kong and an inland city Beijing are used to train and validate all the models. Experiments show that the MKL model outperforms the other models. Moreover, the MKL model has better forecast ability for high health risk category AQ.


Sign in / Sign up

Export Citation Format

Share Document