scholarly journals Proposal of a Big data System for an Intelligent Management of Water Resources

2021 ◽  
Vol 314 ◽  
pp. 02002
Author(s):  
Sara Bouziane ◽  
Badraddine Aghoutane ◽  
Aniss Moumen ◽  
Ali Sahlaoui ◽  
Anas EL Ouali

Today, advanced technologies like Big Data, IoT, and Cloud Computing can provide new opportunities and applications in all sectors. In the water sector, water scarcity has become a common concern of different institutions and actors worldwide. In this context, several approaches and systems have been proposed and developed, using these technologies, allowing intelligent water resources management. Internet of Things can be used for assisting the Water Industry to collect data, manage and monitor the water infrastructures using smart devices. Big Data is a strategic technology for analyzing and interpreting collected data into valuable and helpful information for better decision making. This paper presents Big Data and Internet of Things technologies. It addresses theirs uses in some use cases such as municipal water losses, water pollution in agriculture, water Leak detection, etc., to provide new systems and innovative solutions for intelligent water resources management. Based on this study, we propose a Big Data and IoT architecture for intelligent water resources management.

2020 ◽  
Author(s):  
Yong Tian

<p>The ability to dynamically simulate the supply and demand of irrigated water in arid and semi-arid regions is needed to improve water resources management. To meet this challenge, this study developed an agriculture water resources allocation (WRA) module and coupled this module to an integrated surface water-groundwater model GSFLOW. The original GSFLOW, developed by USGS, is able to simulate the entire hydrological cycle. The improved GSFLOW with the WRA module allows the simulation, analysis and management of nearly all components of agriculture water use. It facilitates the analysis of agricultural water use when limited data is available for surface water diversion, groundwater pumpage, or canal information. It can be used to simulate and analyze historical and future conditions. The improved GSFLOW program was applied to the Heihe River Basin (HRB), which is the second largest inland river basin in China. The calibration and validation results of the program shows that the program is capable of simulating both hydrological cycle and actual agriculture water use with limited data. Then the model was used to analyze a set of agriculture water use scenarios, for example, limiting groundwater pumpage, adjusting water allocations between the middle stream and the lower stream. Based on these scenarios, it was found that the improved model could be used as a decision tool to provide better agriculture water resources management strategies. The improved model could be easily used in other basins.</p>


2018 ◽  
Vol 4 (3) ◽  
pp. 346-358 ◽  
Author(s):  
Matthew Bartos ◽  
Brandon Wong ◽  
Branko Kerkez

Leveraging recent advances in technologies surrounding the Internet of Things, “smart” water systems are poised to transform water resources management by enabling ubiquitous real-time sensing and control.


Sign in / Sign up

Export Citation Format

Share Document