scholarly journals Experimental characterization of a PEM fuel cell for marine power generation

2022 ◽  
Vol 334 ◽  
pp. 05002
Author(s):  
Andrea Pietra ◽  
Marco Gianni ◽  
Nicola Zuliani ◽  
Stefano Malabotti ◽  
Rodolfo Taccani

This study is focused on the possible application of hydrogen-fed PEM fuel cells on board ships. For this purpose, a test plant including a 100 kW generator suitable for marine application and a power converter including a supercapacitor-based energy storage system has been designed, built and experimentally characterised. The plant design integrates standard industrial components suitable for marine applications that include the technologies with the highest degree of maturity currently available on the market. Fuel Cell generator and power converter have been specifically designed by manufacturers to fit the specific plant needs. The experimental characterisation of the plant has been focused on the evaluation of the efficiency of the single components and of the overall system. Results shows a PEM fuel cell efficiency of 48% (when all auxiliaries are included) and an overall plant efficiency, including power conditioning, of about 45%. From load variation response tests, the fuel cell response time was maximum 2 seconds without supercapacitors and increased up to 20 seconds with supercapacitors connected, reducing the stress on the fuel cell generator. Experimental results confirm that PEM fuel cells, when supported by a suitably sized energy storage system, represent a viable technical solution for zero-emission power generation on board ships.

2017 ◽  
Author(s):  
Sebastian Roa Prada ◽  
Oscar Eduardo Rueda Sanchez

Wastewater treatment plants help removing organic matter from wastewater, and at the same time, generate digester gas as a useful byproduct. Digester gas is rich in methane, which can be used to generate electricity. Fuel cell systems are the cleanest technology for power recovery from digester gas, since all other technologies generate electricity by burning all the digester gas. The most commonly used type of fuel cell for power generation from digester gas in wastewater treatment plants is the molten carbonate fuel cell. This type of fuel cell can tolerate the impurities usually found in digester gas, such as CO2 and H2S; however, this kind of fuel cell systems is more suitable for large wastewater treatment plants. This prevents the use of fuel cells for power generation from digester gas in wastewater treatment plants serving medium and small size cities, or even farms. This research attempts to explore solutions to make fuel cell technologies technically and economically feasible for medium and small size wastewater treatment plants. The most suitable type of fuel cells for small applications is the Proton Exchange Membrane, PEM, fuel cell. The main challenge in using PEM fuel cells for power recovery from digester gas is that they are highly sensitive to impurities in its hydrogen gas supply. Therefore, in order to use PEM fuel cells in this application, energy must be spent in cleaning the digester gas before it enters the PEM fuel cell and reformer system. Energy is also required in the form of heat by the reformer system to produce the hydrogen needed by the fuel cell. Both the energy used in the cleaning of the digester gas and the hydrogen generation process comes from burning part of the digester gas. This reduces the amount of digester gas available for hydrogen production and electricity generation, respectively. The approach followed in this investigation seeks to develop a Simulink® model of the reformer and fuel cell so that the modeling tools of Matlab® can be used to simulate the performance of the system under different operating conditions. A sensitivity analysis is carried out to identify critical operating parameters affecting the performance of the overall system. The results obtained in this work provide guidelines for future studies of performance optimization and optimal control using the tools available in Matlab®, in order to get maximum electricity generation from digester gas using PEM fuel cell systems.


2020 ◽  
Vol 10 (22) ◽  
pp. 8310
Author(s):  
Nicu Bizon ◽  
Mihai Oproescu ◽  
Phatiphat Thounthong ◽  
Mihai Varlam ◽  
Elena Carcadea ◽  
...  

In this study, the performance and safe operation of the fuel cell (FC) system and battery-based energy storage system (ESS) included in an FC/ESS/renewable hybrid power system (HPS) is fully analyzed under dynamic load and variable power from renewable sources. Power-following control (PFC) is used for either the air regulator or the fuel regulator of the FC system, or it is switched to the inputs of the air and hydrogen regulators based on a threshold of load demand; these strategies are referred to as air-PFC, fuel-PFC, and air/fuel-PFC, respectively. The performance and safe operation of the FC system and battery-based ESS under these strategies is compared to the static feed-forward (sFF) control used by most commercial strategies implemented in FC systems, FC/renewable HPSs, and FC vehicles. This study highlights the benefits of using a PFC-based strategy to establish FC-system fueling flows, in addition to an optimal control of the boost power converter to maximize fuel economy. For example, the fuel economy for a 6 kW FC system using the air/fuel-PFC strategy compared to the strategies air-PFC, fuel-PFC, and the sFF benchmark is 6.60%, 7.53%, and 12.60% of the total hydrogen consumed by these strategies under a load profile of up and down the stairs using 1 kW/2 s per step. For an FC/ESS/renewable system, the fuel economy of an air/fuel-PFC strategy compared to same strategies is 7.28%, 8.23%, and 13.43%, which is better by about 0.7% because an FC system operates at lower power due to the renewable energy available in this case study.


Sign in / Sign up

Export Citation Format

Share Document