scholarly journals Off-design Characteristics for Expansion Power Generation Process of Liquid Air Energy Storage System

Author(s):  
Guizhi Xu ◽  
Zhanfeng Deng ◽  
Shuangshuang Cui ◽  
Xingping Shi ◽  
Chang Lu ◽  
...  
2019 ◽  
Vol 11 (19) ◽  
pp. 5441 ◽  
Author(s):  
Chao Ma ◽  
Sen Dong ◽  
Jijian Lian ◽  
Xiulan Pang

Hybrid energy storage systems (HESS) are an effective way to improve the output stability for a large-scale photovoltaic (PV) power generation systems. This paper presents a sizing method for HESS-equipped large-scale centralized PV power stations. The method consists of two parts: determining the power capacity by a statistical method considering the effects of multiple weather conditions and calculating the optimal energy capacity by employing a mathematical model. The method fully considers the characteristics of PV output and multiple kinds of energy storage combinations. Additionally, a pre-storage strategy that can further improve stability of output is proposed. All of the above methods were verified through a case study application to an 850 MW centralized PV power station in the upstream of the Yellow river. The optimal hybrid energy storage combination and its optimization results were obtained by this method. The results show that the optimal capacity configuration can significantly improve the stability of PV output and the pre-storage strategy can further improve the target output satisfaction rate by 8.28%.


1987 ◽  
Vol 26 (Part 2, No. 10) ◽  
pp. L1743-L1745 ◽  
Author(s):  
Hidenori Akiyama ◽  
Takashi Majima ◽  
Kouichi Fujita ◽  
Sadao Maeda

Author(s):  
Jerry Kumar ◽  
Nanik Ram Parhyar ◽  
Manoj Kumar Panjwani ◽  
Danish Khan

With the increasing demand for solar energy as a renewable source has brought up new challenges in the field of energy. However, one of the main advantages of photovoltaic (PV) power generation technology is that it can be directly connected to the grid power generation system and meet the demand of increasing energy consumption. Large-scale PV grid-connected power generation system put forward new challenges on the stability and control of the power grid and the grid-tied photovoltaic system with an energy storage system. To overcome these problems, the PV grid-tied system consisted of 8 kW PV array with energy storage system is designed, and in this system, the battery components can be coupled with the power grid by AC or DC mode. In addition, the feasibility and flexibility of the maximum power point tracking (MPPT) charge controller are verified through the dynamic model built in the residential solar PV system. Through the feasibility verification of the model control mode and the strategy control, the grid-connected PV system combined with reserve battery storage can effectively improve the stability of the system and reduce the cost of power generation. To analyze the performance of the grid-tied system, some real-time simulations are performed with the help of the system advisor model (SAM) that ensures the satisfactory working of the designed PV grid-tied System.


Sign in / Sign up

Export Citation Format

Share Document