Numerical modeling of electromagnetic waves scattering from 2D coastal breaking sea waves

2013 ◽  
Vol 64 (2) ◽  
pp. 24505 ◽  
Author(s):  
Refzul Khairi ◽  
Arnaud Coatanhay ◽  
Ali Khenchaf ◽  
Yves Marie Scolan
2013 ◽  
Vol 446-447 ◽  
pp. 1261-1265 ◽  
Author(s):  
Mohsen Pashna ◽  
Rubiyah Yusof ◽  
Zool H. Ismail

An oil spill is discharge of fluid petroleum such as crude oil or its by-product derivations such as diesel and gasoline on the water surface. In this paper, a numerical model of the oil spill has been introduced as a simulation of releasing oil on the sea surface. Meantime, the influence of sea waves and wind has been considered and shown. Moreover, a swarm of robots is engaged in order to track the spreading boundaries of the slicked oil, so that a novel schedule of robot locomotion is presented, based on the online sharing information in the flock network. Therefore, the swarm of robots tracks the oil spill margins intelligently and successfully.


Author(s):  
Constantin Ghita ◽  
Aurel-Ionut Chirila ◽  
Ioan-Dragos Deaconu ◽  
Valentin Navrapescu ◽  
Daniel Ion Ilina

2020 ◽  
Vol 56 (3) ◽  
pp. 312-323
Author(s):  
D. V. Chalikov
Keyword(s):  

Biosensors ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 62
Author(s):  
Aleksandr Gorst ◽  
Kseniya Zavyalova ◽  
Aleksandr Mironchev

The article presents a model of a near-field sensor for non-invasive glucose monitoring. The sensor has a specific design and forms a rather extended near-field. Due to this, the high penetration of electromagnetic waves into highly absorbing media (biologic media) is achieved. It represents a combined slot antenna based on a flexible RO3003 substrate. Moreover, it is small and rather flat (25 mm in diameter, 0.76 mm thick). These circumstances are the distinguishing features of this sensor in comparison with microwave sensors of other designs. The article presents the results of numerical modeling and experimental verification of a near-field sensor. Furthermore, a phantom of human biological media (human hand) was created for experimentation. In the case of numerical modeling, the sensor is located close to the hand model. In a full-scale experiment, it is located close to the phantom of the human hand for the maximum interaction of the near-field with biological materials. As a result of a series of measurements for this sensor, the reflection coefficient is measured, and the dependences of the reflected signal on the frequency are plotted. According to the results of the experiments carried out, there is a clear difference in glucose concentrations. At the same time, the accuracy of determining the difference in glucose concentrations is high. The values of the amplitude of the reflected signal with a change in concentration differ by 0.5–0.8 dB. This sensor can be used for developing a non-invasive blood glucose measurement procedure.


1997 ◽  
Vol 161 ◽  
pp. 761-776 ◽  
Author(s):  
Claudio Maccone

AbstractSETI from space is currently envisaged in three ways: i) by large space antennas orbiting the Earth that could be used for both VLBI and SETI (VSOP and RadioAstron missions), ii) by a radiotelescope inside the Saha far side Moon crater and an Earth-link antenna on the Mare Smythii near side plain. Such SETIMOON mission would require no astronaut work since a Tether, deployed in Moon orbit until the two antennas landed softly, would also be the cable connecting them. Alternatively, a data relay satellite orbiting the Earth-Moon Lagrangian pointL2would avoid the Earthlink antenna, iii) by a large space antenna put at the foci of the Sun gravitational lens: 1) for electromagnetic waves, the minimal focal distance is 550 Astronomical Units (AU) or 14 times beyond Pluto. One could use the huge radio magnifications of sources aligned to the Sun and spacecraft; 2) for gravitational waves and neutrinos, the focus lies between 22.45 and 29.59 AU (Uranus and Neptune orbits), with a flight time of less than 30 years. Two new space missions, of SETI interest if ET’s use neutrinos for communications, are proposed.


Sign in / Sign up

Export Citation Format

Share Document