scholarly journals High energy physics and very high energy astrophysics

2017 ◽  
Vol 145 ◽  
pp. 05005
Author(s):  
Lawrence W. Jones
1989 ◽  
Vol 231 (1-2) ◽  
pp. 43-48 ◽  
Author(s):  
Luca Amendola ◽  
Marco Litterio ◽  
Franco Occhionero

2019 ◽  
Vol 10 (01) ◽  
pp. 189-214 ◽  
Author(s):  
Manuela Boscolo ◽  
Jean-Pierre Delahaye ◽  
Mark Palmer

The potential of muon beams for high energy physics applications is described along with the challenges of producing high quality muon beams. Two proposed approaches for delivering high intensity muon beams, a proton driver source and a positron driver source, are described and compared. The proton driver concepts are based on the studies from the Muon Accelerator Program (MAP). The MAP effort focused on a path to deliver muon-based facilities, ranging from neutrino factories to muon colliders, that could span research needs at both the intensity and energy frontiers. The Low EMittance Muon Accelerator (LEMMA) concept, which uses a positron-driven source, provides an attractive path to very high energy lepton colliders with improved particle backgrounds. The recent study of a 14-TeV muon collider in the LHC tunnel, which could leverage the existing CERN injectors and infrastructure and provide physics reach comparable to the 100[Formula: see text]TeV FCC-hh, at lower cost and with cleaner physics conditions, is also discussed. The present status of the design and R&D efforts towards each of these sources is described. A summary of important R&D required to establish a facility path for each concept is also presented.


2003 ◽  
Vol 2003 (02) ◽  
pp. 048-048 ◽  
Author(s):  
Clifford P Burgess ◽  
James M Cline ◽  
François Lemieux ◽  
Richard Holman

2010 ◽  
Vol 6 (S272) ◽  
pp. 581-586
Author(s):  
Guillaume Dubus ◽  
Benoît Cerutti

Abstractγ-ray binaries are systems that emit most of their radiative power above 1 MeV. They are associated with O or Be stars in orbit with a compact object, possibly a young pulsar. Much like colliding wind binaries, the pulsar generates a relativistic wind that interacts with the stellar wind. The result is non-thermal emission from radio to very high energy γ-rays. The wind, radiation and magnetic field of the massive star play a major role in the dynamics and radiative output of the system. They are particularly important to understand the high energy physics at work. Inversely, γ-ray binaries offer novel probes of stellar winds and insights into the fate of O/B binaries.


2012 ◽  
Vol 375 (5) ◽  
pp. 052029
Author(s):  
Marco Roncadelli ◽  
Alessandro De Angelis ◽  
Giorgio Galanti

Author(s):  
Lucio Rossi ◽  
Carmine Senatore

In view of the preparation for a post-LHC collider, the high-energy physics (HEP) community started from 2010 to discuss various options, including the use of HTS for very high field dipoles. Therefore, a small program was set in Europe aiming at exploring the possibility of using HTS for accelerator quality magnets. Based on various EU funded programs, though at modest levels, has enabled the European community of accelerator magnets to start getting experience in HTS and addressing a few issues. The program was based on use of REBCO tapes to form 10 kA Roebel cables, to be used to wind small dipoles of 30-40 mm aperture in the 5 T range. The dipoles are designed to be later inserted in a background dipole field (in Nb3Sn), to reach eventually a field level in the 16-20 T range, beyond the reach of LTS. The program is currently underway: more than 1 km tape of high performance (Je > 500 A/mm2 at 20 T, 4.2 K has been manufactured and characterized, various 30 m long Roebel cables have been assembled and validated up to 13 kA, a few dipoles have been wound and tested, reaching at present 4.5 T in stand-alone (while a dipole made from race track coils with no-bore exceeded 5 T using stacked tape cable) and a test in a background field is being organized.


Sign in / Sign up

Export Citation Format

Share Document